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Abstract 
This paper describes modern Distribution Management System (DMS) 
and Voltage/VAR Control (VVC) as one of its important components. 
Importance of DMS with respect to latest changes such as renewable 
energy sources, distribution generation, demand-respond is significant 
for the complete power system stability and control. In this paper VVC, 
as one of the most important applications in DMS, is explained and 
analyzed. VVC uses power system control equipment and calculates 
new optimal operational state. Typical VVC objective function is 
minimization of system power losses, violations of bus voltage limits, 
feeder capacity limits or combinations of these. Changes of controllable 
devices are presented through their injected current used in current 
iteration method for power flow. Test of Voltage/VAR control is 
performed on modified IEEE13 test network and results show that 
proper adjustments of OLTC transformers, capacitors and DG 
significantly reducepower losses while satisfying all operation 
constraints. 
 

 
1. INTRODUCTION  

Growing concerns for the environmental problems have 
lead to increased integration and usage of renewable energy 
sources in the electricity grid. Renewable energy sources offer 
potentially infinite energy supply with low operating costs and 
minimal negative impacts on the environment. While 
Renewable Energy Resources (RES) have many advantages to 
offer, integration of renewable energy resources imposes 
several challenges for DN control. Some of the main factors 
that limit generation from RES are feeder’s thermal capacity, 
system’s fault levels, protection issues, reverse power flow 
capabilities of the distribution system, and steady state voltage 
rise problem [1]-[2].Compared to large power plants, RES 
have less capacity and they are usually integrated in lower grid 
levels to avoid expensive infrastructure investments. When 
connected to distribution network, RES can cause 
bidirectional power flow and seriously influence the operation 
of the whole grid. This calls for establishment of new 
operational and control strategies different from the one used 
for traditional unidirectional power flow in conventional 
distribution networks. In order to meet theserequirements, an 

efficient modelbased distribution management system (DMS) 
with improved operational and control strategies needs to be 
developed.This paper describes the most important components 
of modern DMS and explains set of functions and applications 
of each individual component. Moreover, paper presents 
calculation of voltage and reactive power control in distribution 
systems as one of the most important application in DMS.  

There are many proposed solutions for Volt/VAR in the 
literature.Traditionally, control of voltage and reactive power 
in distribution systems is achieved using control devices such 
as on-load tap changers (OLTC) transformers and switched 
shunt capacitors [3]-[5]. The Multi-objective genetic algorithm 
(SPEA2) incremented by fuzzy logic is used in [6] to control 
automatic voltage regulators (AVRs) banks and capacitors in 
distribution systems for different load conditions, dealing with 
the combinatorial multi-objective optimization problem. 
Reference [7] presents a PSO-based (particle swarm 
optimization) optimization approach to find the optimal 
dispatch of a ULTC, substation capacitors, and feeder 
capacitors for volt/VAR control in a distribution system. 
Besides switched capacitors, reactive power can be regulated 
with distributed generators (DGs). If DG is installed on a 
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certain feeder, the voltage of that point can rise since DG 
injects power at a certain point of the system and conventional 
operation of the voltage control needs to be modified to 
accommodate the presence of DG. This requires coordination 
between DG and other regulating equipment. In [1], 
coordination between voltage regulators and DGs is achieved 
locating RTUs at each DG, which communicate with each 
other. Using readings of these RTU, the voltage regulator 
controller can determine voltage levels and hence efficiently 
regulate the voltage of the feeder. Proper coordination among 
on-load tap-changer (OLTC), substation capacitors and feeder 
capacitors in the presence of Distributed Generation in [8] is 
achieved using combined local and remote control based on 
automated remote adjustment to the local control in order to 
keep the operating constraints fulfilled all the time. Voltage 
VAR control in distribution networks with DGs is also studied 
in [9]-[17]. This paperpresentscalculation of VVC in 
distribution systems with renewable energy based distributed 
generators. Method uses power flow calculation where all 
changes of control devices are treated as current injections.  
Algorithmseeks for optimal tap position for OLTC, switching 
position for capacitor and reactive power injection for DG 
which minimizes objective function and satisfy all physical 
limitations of thedistribution system.  

Section2presents the modelof a modernDMSsystemand 
describes the interactionof the main components within the 
model. Section 3 provides detailed description of VVC 
methodandalgorithm defined in termsof the 
necessarymodifications needed for the proper handling ofRES. 
Section4verifiesand displays the resultsof the 
proposedalgorithm applied onmodifiedIEEE13testfeeder. 
Section5summarizes theconclusionsand 
recommendationsforfuture work. 

 
2. DISTRIBUTION MANAGEMENT SYSTEM 
 

A Distribution Management System[18] is a collection of 
system components capable of collecting, organizing, 
displaying and analyzing real-time or near real-time electric 
distribution system information.Typically, real-time data is 
transferred to Power System Model (PSM) [19]-[20] using 
Supervisory Control and Data Acquisition (SCADA) [21]-[25] 
component.Data is visualized using single-line diagrams 
presented in very usable Graphical User Interface [26]-[33]. 
PSM is stored in a proprietary in-memory database and 
contains equipment parameters, topological, and real-time 
measurementdata. The topology is updated by set of tracing 
[34]-[35] routines. The real-time measurements are processed 
by Distribution System State Estimation (DSSE) component 
(DSSE) [36]-[47]. Albeit DSSE plays a role of load estimation 
in DMS, it is one of the most important components for 
Distribution Network Analysis (DNA). Power Flow (PF) [48]-
[63] is another important component. PF is used by other 
components and for what-if scenarios. 
Voltage/VARcontrol(VVC) [1]-[17] within DMS is a 
component which is used to calculate optimal set of control 
actions while optimizing voltage violations, power losses and 

line limits. Since VVC does not change topology of the 
network, in some cases, VVC is not capable to find optimal 
operating state. Optimal Feeder Reconfiguration (OFR) [64]-
[69] calculates optimal operating state using switches as 
control variables. Short Circuit Calculation (SCC) and Fault 
Location (FLOC) are used to analyze protective device 
settings and to locate faults [70]-[79]. 

Figure1shows the schematic of SCADA controlled VVC 
withits main components. 
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Figure1.Distribution Management System Control 

 
3.VOLTAGE VAR CONTROL 
 
The basic objective of VVC is to find suitable adjustments of 
the tap positions, capacitor status and DG reactive power 
injection for network model received from DSSE. To model 
the adjustments of these control devices, current iteration (CI) 
method can be used, where all changes of LTC position, 
capacitor status or DG reactive power injection, are 
represented as current source injections. In this way 
admittance matrix is constant and factorized once, and only 
vector of current injection is updated [15]. Current iteration 
method is explained in the following subsections. 
 
3.1 Current iteration method for VVC 
In current iteration method the branches are represented by an 
admittance matrix, expressed in a general form for 𝑁-node 
network as: 

Y=

⎣
⎢
⎢
⎢
⎡Y11 Y12 ⋯ Y1N

Y21 Y22 ⋯ Y2N

⋮ ⋮ ⋱ ⋮
YN1 YN2 … YNN⎦

⎥
⎥
⎥
⎤
(1) 

Where Ypq are admittances of the branches calculated using 
equivalent π model for given branch parameters. It is also easy 
to include constant node admittances Ypof capacitors or 
reactors connected to node 𝑝, or loads represented by constant 
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impedance by adding Yp to p-th diagonal element of 
admittance matrix 𝑌. For a network with only PQ buses loads 
are treated as current source injections. If constant node 
admittances Ypof loads connected to node 𝑝 are included in 
admittance matrix, the load current injections at the p-th bus 
can be expressed as: 

ILp
n=�

SLp

Vp
n-1�

*

+YLpVp
n-1 (2) 

whereSLpis complex load power, YLp is the node shunt 
admittance, and 𝑛 is the number of iteration. In each iteration, 
current source injections is a function of voltage from 
previous iteration. Current iteration method can be expressed 
as: 

⎣
⎢
⎢
⎢
⎡Y11 Y12 ⋯ Y1N

Y21 Y22 ⋯ Y2N

⋮ ⋮ ⋱ ⋮
YN1 YN2 … YNN⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎡
V1
V2
⋮

VN⎦
⎥
⎥
⎤

= �

Vsl
I2
⋮

IN

� (3) 

In this  formulation the voltage updates, depend only on the 
parameters of the branch itself and injected current at one end 
of the branch.  

[V]n=[Y]-1[I]n-1  (4) 
Method iteratively calculates the voltage Vp

nand only requires 
the value of the voltages in the previous iteration. 
Convergence requires that voltage values of the previous 
iteration are close to voltage values of the current iteration 
within some specified tolerance. 
 
3.1.1 Modeling capacitors 
In VVC control capacitors are used for generating reactive 
power as a response to reactive power demand. For a capacitor 
control, control variable is binary, where zero corresponds to 
the switched off status and value one corresponds to switched 
on status. The capacitor control can be either ganged where all 
phases are operated in unison and non-ganged where each 
phase is operated independently. In current iteration method 
capacitors are modeled with their injected currents: 

IC=YcVp (5) 
If capacitor is initially switched on, capacitor constant 
admittances are included in 𝑌 matrix. In this case, capacitor 
current ICis not included in vector of injected currents. 
Reactive power control with capacitors is achieved by 
changing the status of capacitors according to the Table 1. 

 
TABLE 1. VAR CONTROL WITH CAPACITORS 
Initial 
state 

Next 
state 

Y I 

On On Yc 0 
On Off Yc -IC 
Off On 0 +IC 
Off Off 0 0 

In current injection vector current +IC will be included if 
capacitor was initially switched off and the status is changed 
to“on”, and current  -IC if capacitor was initially switched on 
and the status is changed to“off”.  

 
3.1.2 Modeling tap positions of LTC transformers 
On-load tap-changer (OLTC) is a transformer with adjustable 
taps, which are moved to upper or lower positions to keep 
secondary bus voltages within the range. In VVC control, 
optimum tap position needs to provide objective function 
minimization. Figure 2 shows LTC transformer connected 
between buses 𝑝 and 𝑞.  

t:1
pI qI

pV qV

p q

 
Figure 2. LTC transformer 

By searching the optimum OLTC tap position, admittance 
matrix is changed for different tap values according to the 
equation (case from Figure 2): 

Y= �
TYppT YpqT
TYqp Yqq

� (6) 

where𝑇is matrix of tap positions for different phases:  

T= �
t(0) 0 0
0 t(1) 0
0 0 t(2)

� (7) 

In order to keep admittance matrix constant, initial tap value 
Tinitis included in admittance matrix, while all other changes 
of tap positions∆Tare modeled using fictitious current 
injections, and included in current injection vector for CI 
method: 

∆IpLTC= �T-1YppT-1-Ypp�Vp- �T-1Ypq-Ypq�Vq (8) 

∆IqLTC= �YqpT-1-Yqp�Vp (9) 
If LTC is placed between nodes 𝑝 and 𝑞 (Figure 2), currents 
∆IpLTC and ∆IqLTC are included in current injection vector for 
buses𝑝 and𝑞. In this way admittance matrix is constant, while 
tap changes are considered through current injections. For a 
tap changer, control variable ∆T is an integer that is changed 
by one in one direction (+1 or -1) until the optimum solution is 
found or until the limits are reached: 

 Tmin≤T≤Tmax(10) 
whereT=Tinit±∆T. Tap changer control can be either ganged, 
where taps for all phases are moved to the same positions or 
non-ganged where each phase has different tap movement.  
 
3.1.3 Modeling Distributed Generators 
Same as capacitors, distributed generators are used to generate 
reactive power and thus reduce the reactive power flow 
throughout the distribution networks. Unlike capacitors, which 
generate fixed amount of reactive power (status “on” or “off”) 
distributed generators can supply different amounts of reactive 
power (Figure 3). 

maxQminQ
initQ

Q∆
n segments

 

 
Figure 3. VAR control with distributed generators 

 
Reactive power of distributed generator is given as: 
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Q=Qinit±∆Q(11) 
whereQinit is initial value of reactive power which gives the 
initial injected current. 

IDGinit= �P+jQinit
Vp

�
*
 (12) 

In order to model the changes of reactive power injection from 
DGs during the VVC control, control variable ∆Q is defined: 

∆Q= Qmax-Qmin
n

(13) 
where𝑛 is number of segments given in Figure 3. Control 
variable ∆Q defines changes of reactive power injection from 
initial reactive powerQinit. Using the value ∆Q current is 
defined as: 

∆IDG= �j∆Q
Vp
�

*
(14) 

For CI method injected current from DG is: 

IDG=IDGinit±∆IDG= �P+j(Qinit±∆Q)
Vp

�
*
(15) 

3.1.4 CI algorithm 
1. Form the network admittance matrix𝑌.  
2. For flat start, all nodes’ voltages are assumed to be 

1+j0. Set iteration counter 𝑛 to 0.  
3. Calculate node currents (load, capacitor, LTC 

transformer, DG) and form node injected currents 
vector. Increment iteration counter by 1. 

4. Calculate the new node voltages [V]n=[Y]-1[I]n-1. 
5. Calculate the maximum error between the new 

voltages and the voltages of the previous step. If the 
maximum error is less than or equal to the specified 
tolerance, stop the method, otherwise,  go to step 3. 
 

3.2 VVC algorithm 
VVC algorithm attempts to find suitable adjustments of the 
tap positions, capacitor status and reactive power injection 
from DG in a way that minimizes power losses, voltage and 
currentviolations. Voltage and current violations are defined 
as deviations from desirable operating range. For voltage it is 
necessary that voltage is not lower or higher than its specified 
limits: 

Vp,min≤Vp≤Vp,max(16) 
To avoid current violations, current cannot exceed its capacity 
constraint:  

Ipq≤Ipq,max(17) 
Constraints (16) and (17) form objective function by using 
penalties for their violations. Penalty functions for voltage and 
current violationsand power losses are included in objective 
function as: 

f=∑ cVmin�Vp-Vmin�
2
+cVmax�Vmax-Vp�

2
p . 

+∑ cImax�Ipq,max-Ipq�
2
+cPLPLOSSpqpq (18) 

where cVi,mincVi,maxcIij,maxcPL are penalties for minimum voltage 
violation, maximum voltage violation, maximum current limit 
violation and power losses, respectively. In order to find 
optimal equipment adjustment while minimizing objective 
function, VVC algorithm is divided in three parts: method 
which finds optimal status of capacitors, method which finds 

optimal reactive power injection from DG, method which 
finds optimal tap position for LTC transformers.  
 
3.2.1 Method which finds optimal status of capacitors 
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Figure 4.Algorithm for VAR control with capacitors 

 
Method which finds optimal status of capacitorsis described 
with the following steps (Figure 4): 

1. Detect all capacitors used for VAR regulation in 
selected distributed network. 

2. Set capacitor counter ncto first capacitor.  
3. Change status of nc capacitor.  
4. Calculate power flow and check for any violations. 
5. Form objective function from equation (18) which 

considers penalties for voltage violations, line current 
violations and power losses. 

6. Reset capacitor status to status before changes.   
7. If all capacitors are examined go to step 8. Otherwise, 

set nc=nc+1and repeat the steps 3-7 for all 
capacitors. 

8. Find capacitor which gives minimum objective 
function. If this objective function is improved, 
change the status of that capacitor and repeat 
procedures from Step 2. If objective function is not 
improved, optimal capacitors statuses have been 
found and algorithm ends. 
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Figure 5.Algorithm for VAR control with 

distributed generators/voltage control with LTC 
 

3.2.2 Method which finds optimal reactive powerinjection/tap 
positionfor DG/LTC 
Method which finds optimal reactive power injection/tap 
position for DG/LTCis described with the following 
steps(Figure 5): 

1. Detect all DGs/LTCs used for VVCcontrol in 
selected distributed network. 

2. Set counter nDG/ nLTCto first DG/LTC.  
3. Find direction of changes and change ∆Q/ ∆Tone 

step in that direction: 
Qn=Qn-1±∆Q 
Tn=Tn-1±∆T 

4. Calculate power flow and check for any violations. 
5. Form objective function from equation (18) which 

considers penalties for voltage violations, line current 
violations and power losses. 

6. Reset DG/LTC to initial status before changes.  
7. If all DGs/LTCs are examined go to step 8. 

Otherwise, set nDG=nDG+1/nLTC=nLTC+1and repeat 
the steps 3-7 for all DGs/LTCs. 

8. Find DG/LTC which gives minimum objective 
function. If this objective function is improved, 
change the status of that DG/LTC and repeat 
procedures from Step 2. If objective function is not 
improved, optimal DG/LTC has been found and 
algorithm ends. 

These three methodsare interconnectedin such a waythatthe 
optimalsolutionof one controllerinfluencesthe search for 
optimalsolution of othercontrollers. In other words, 
thealgorithmis executeduntil the change of any controllerdoes 
not affect any other controller. The overall VVC algorithm is 
given in Figure 6. 

Yes

Run the Algorithm for control 
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STOP
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position changed?

START
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of Distributed generators

Run the Algorithm for control 
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No

 
Figure 6.VVC algorithm 

 
4.  RESULTS 
 
VVC algorithm is tested on modified IEEE13 test network. 
The network comprises of 33 buses, 32 branches, 20 loads and 
control devices: 2 LTC transformers, 5 capacitors and 2 DGs. 
Shunt capacitors are installed at several locations to 
compensate reactive power flow, improve the voltage profile 
and reduce the real power losses. There are 4 Y-connected 
capacitors installed at bus 645, 675, 611 and 633’, and one Δ-
connected capacitor installed at bus 646’. Reactive power 
control with DG is performed using DGs connected at bus 633 
and 675’. Voltage control is achieved with two substation 
transformers installed with LTC to keep the bus voltage close 
to the specified value. 
Objective function from equation (18) takes into account 
violations ofvoltage limits, current limits and power losses 
using penalty for their violations. Usually 5% margins around 
nominal voltage values are defined as voltage limits. This 
means that voltage values greater than 1.05 (p.u) or less than 
0.95 (p.u) are considered in objective function using penalties 
for their violations. Current violations are defined as violation 
of predefined capacity of each line. By changing the values of 
penalty factors, it is possible to change the priority of how the 
constraints are satisfied. Higher penalty factor gives priority to 
that constraint, and minimizes its violations.To illustrate 
theeffects of grading penalty factors in objective function, 
three different cases are considered: 
 
Case 1. Voltage and current violations have same penalties 
Case 2. Voltage violations are given higher penalty factor 
Case 3. Current violations are given higher penalty factor 

 
Table 2 and 3 summarize the results for three VVC cases 
above. Results for three cases are also compared with basic 
case without application of VVC optimization. Table 2 
displays total number of voltage violations, total number of 
current violations,objectivefunction for all voltage violations 
and objective for all current violations. As it can be seen from 
Table 2 basic case gives maximum number of both voltage 
and current violations. In Case 1, VVC optimization with 
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equal penalty for voltage and currentlimits violation decreases 
total number of voltage violations to 7 and total number of 
currentviolations to 14. In Case 2, violations of voltages have 
been significantly reduced since priority is given to removal of 
this violations. Number of current violations is same as in 
Case 1, but the violations are greater, which is indicated by 
calculated objective. Objective is increased from 0.020049 in 
Case 1 to 0.200554 in Case 2. In Case 3, current violations 
need to be minimized, as they are given higher penalty 
factor.When compared to other cases, results confirm that 
Case 3 gives the smallest objective for current violations 
(0.006567), as expected. 
 

TABLE 2. VIOLATIONS OF VOLTAGE AND CURRENT LIMITS 

Results Base 
Case Case1 Case2 Case3 

No: Voltage  36 7 5 10 
No: Current  72 14 14 14 
Obj: Voltage 5.72875 0.004332 0.000751 0.048503 
Obj: Current  22.5644 0.020049 0.200554 0.006567 

 
Table 3 compares results for power losses and total objective 
calculated for all three cases. Results are also compared with 
the basic case before VVC application. Obtained results show 
that voltage and reactive power control can beimproved by 
setting up convenient penalty factor. Usually, higher penalty 
factors are given to larger deviations in order to ensure that 
system will be moved away from this value which can cause 
undesirable situation.  
 

TABLE 3. POWER LOSSES AND TOTAL OBJECTIVE FOR DIFFERENT CASES 

Objective Base 
Case  Case1 Case2 Case3 

Power loss[kW] 50.2180 36.5196 36.5952 36.4091 
Total Objective 78.5111 36.5439 36.7965 36.4641 

 
 
5.  CONCLUSIONS  

This paper presents VVC optimization approach used to find 
the optimal dispatch of LTC, capacitors, and DG in a 
distribution system. The objective is minimization of the 
system power losses, minimum and maximum bus voltages 
violations and violations of maximum current limits. A 
modified IEEE13-bus test system is used to demonstrate the 
effectiveness of the proposed method. Results illustrate how 
VVC algorithm with different types of objective function can 
be used to improve bus voltage profiles and current levels.  
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