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1. ABSTRACT 

 
Two models with four components of chain populations are considered. In the 
model, a prey population X is predated by individuals of a specialist predator 
population Y, and another prey population Z is predated by individuals of a 
generalist predator population U. This model is governed by a system of four 
nonlinear first order ordinary differential equations. To study the dynamics of the 
food chain model, the mentioned system of ordinary differential equations solved 
numerically. One of the biological parameters varied in a sufficiently large range 
and its effects on the dynamics of the system are observed.  Along the w axis of 
the predating rate of the specialist predatorY , around four points 

,088.0,045.0 21  ww  920.0,3000.0 43  wandw we meet chaos. At each 

time chaos precedes period doublings. 
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2. INTRODUCTION 
 
If a very small change in initial conditions 
can produce drastic, even sometimes 
unpredictable results, the system is said 
to be sensitively dependent on the initial 
conditions. In general nonlinearity in the 
systems makes long-term predictions 
impossible. Henri Poincaré says that: “A 
small cause, that is not noticed, can 
produce an effect which will not take into 
consideration, and we say that this effect 
depends on chance…. Small difference in 
initial conditions causes big variation. 
Predictions become impossible…” This 
characteristic behavior of nonlinear 
systems is sometimes called as the 
butterfly effect.  In theory, the flutter of a 
butterfly's wings in Australia could, for 

example, produce a snow storm in the 
Northeastern America, thousands of miles 
away.  

 
 
We can not predict the behavior of a 
system simply looking at the governing 
equations. A slightly nonlinear term in an 
equation makes it difficult to answer 
simple practical questions about the 
evolution of the phenomena described. 
However, mathematical models of 
ecological systems, computer simulations 
of these models and comparison with real 
field data help to understand and predict 
the future of these ecosystems.  
 
Life as an ecosystem is very complex. 
Ecological systems have all the elements 
to produce chaotic dynamics. Although 
chaos is commonly predicted by 
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mathematical models, evidence of its 
existence in natural world is scarce and 
inconclusive.  

 
Food chains are ecosystems with 
extremely simple structure. However they 
have a very complex dynamics. Modeling 
efforts of the dynamics of food chains 
initiated long ago confirm that food chains 
have a very rich dynamics. 
 
First, V.Volterra [23] and A. Lotka [10] 
independently developed a simple model 
of interacting species that still bears their 
joint names.  

 

YaYYX
dt

dY

YYXgX
dt

dX
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(1) 
 
In this model, )(X  is the pray growth 
rate in the absence of the predators, 

),( YXg  is the capture rate of prey by per 
predator, ),( YX is the rate at which each 
predator converts captured prey into 
predator births and 2a  is the constant 
rate at which die in the absence of pray. 
In the first predator-pray model of Lotka-
Volterra, they have Xax 1)(   and a 
linear functional response XaYXg 1),(  .  
 
In general ),(),( YXgYX  , where   is 
called the ecological efficiency. They 
showed that ditrophic food chains (i.e. 
prey-predator systems) can permanently 
oscillate for any initial condition if the 
prey growth rate is constant and the 
predator functional response is linear.  
 
Michael Rosenzweig [16], as a graduate 
student with Robert MacArthur in 1960s, 
added density dependence  and predator 
behavior to the Lotka-Volterra equations 
that an ecological model capable of 
displaying true nonlinear limit cycle was 
developed. 
 
In the early and mid 1970s, physicist 
Robert May [11, 12] demonstrated that 
the simplest ecological models could 
generate complex dynamics, including the 
logistic map. His extremely simple model 

of density-dependent population growth 
with discrete generations was of the form: 
 

)(1 tt XFX               
(2) 

 
Since the pioneering theoretical works by 
Lotka and Volterra early at that time, the 
study of realistic mathematical models in 
ecology, especially the study of relations 
between species and their environment, 
has became a very popular topic that 
interested mathematicians as well as 
biologists. Investigations on various 
population models reflect their use in 
helping to understand the dynamical 
processes involved in such areas as 
predator-prey, competition and ecological 
control of pests. The increasing use of 
mathematics in biology is inevitable as 
biology becomes more quantitative. In 
fact, most realistic biology problems could 
be solved on the fundament of 
constructing suitable mathematical 
models. 
 
The dynamic relationship between 
predators and their prey has long been 
and will continue to be one of the 
dominant themes in both ecological and 
mathematical ecology due to its universal 
existence and importance. These problems 
may appear to be simple mathematically 
at first sight, they are, in fact, often very 
challenging and complicated. There are a 
lot of predator-prey models in literature.  
Among these models, Rosenzweig-
MacArthur [16] (Rosenzweig and 
MacArthur, 1963) model and 
Holling&Tanner model [8, 17] are took as 
basis in this study. 

 
 

3. SPECIALIST AND 
GENERALIST PREDATORS, OUR 

MODEL 
 
There are four basic interactions among 
species: Predator-prey, competition, 
interference and mutualism. Predator-
prey interaction is the most common. 
There are two types of predators: (i) 
specialists and (ii) generalists [8-20]. A 
specialist predator feeds only one food. 
When its favorite food is absent or is in 
short supply, its population density 
decreases exponentially. Generalist 
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predators have alternative food options. 
When their most preferred food is in short 
supply, they switch over alternative food 
options [7, 22]. The Rosenzweig-
MacArthur model is the one, which 
describes the dynamics of a specialist 
predator and its prey. Commonly it used 
to define that predator-prey interaction 
between two biological species, for this 
reason it is a continuous time model of the 
following form: 

    

   

1

1
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2
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(3)  
This model consists of logistic prey and 
specialist predator with Holling II type 
functional response [17]. X and Y are 
population densities of prey and predator 
respectively. 1a  is the rate of self-
reproduction for prey. The parameter a2 

measures how fast the predator Y will die 
when there is no prey to capture, kill and 
eat. 1b  measures the intensity of 
competition among individuals of species 
X for space, food etc. And D measures the 
efficiency of prey in evading a predator’s 
attack. It depends on the protection 
afforded by the environment to the prey. 

1D  has similar meaning as that of D. 
 
A model given by Holling and Tanner [8, 
17] describes the dynamics of a generalist 
predator and its prey: 
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(4) 

where Z is the most favorite food for 
generalist predator U. In this model, prey 
and predator both grow logistically. A and 
K are respectively the rate of self-
reproduction and carrying capacity for the 
prey Z. c is the growth rate of the 
generalist predator due to sexual 
reproduction. The last term in second line 
in Eq. (4) describes how loss in species U 
depends on per capita availability of its 
prey (Z). The other parameters have their 
usual meaning. 

 
As linking specialist and generalist 
predator models showed above, we obtain 
meta population models, which we will 
investigate in this study. For our model, 
this link mechanism can be 
mathematically represented by adding a 

term  2 2 2
2 2w Y U Y D   to the second 

equation of first subsystem: 
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(5) 
 

where Y is a specialist predator, i.e. X is 
the only food for it. Therefore, Y dies out 
exponentially in the absence of X. The last 
term in the second line in Eq. (5) 
represents functional response of the 
predator U, which is a generalist predator. 
It switches its prey whenever its favorite 
food option Z is in short supply. The last 
term in the last line in Eq. (5) describes 
how loss in species U depends on per 
capita availability of its preys (Z and Y). 

 
In the following subsection, firstly 
sensitive dependence on the parameters 
and secondly sensitive dependence on 
initial populations will numerically be 
investigated. 
Parameter values used for this model are 
around the ones in [15]: 
 4321321121 ,,,,,,,,,,,,,, wwwwwKDDDDcbaaA

= 
 0.10.74,0.05,4,1,,10020,10,10,10,0.2,0.05,0.7,3,1.5,

  
4. HOPF POINT ANALYSIS IN w  

 
To understand the sensitive dependence 
on the parameters, initial populations, 
and understand the situations that lead 
the system to chaos, one needs to make a 
Hopf point analysis. Since for a reach 
system like in (5), it is almost impossible 
to make an overall analysis, hence we 
confine ourselves to a sub manifold 
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 4321321121 ,,,,,,,,,,,,,,,)0(),0(),0(),0( wwwwwKDDDDcbaaAUZYX

 0.10.74,0.05,4,w,20,100,10,10,10,0.2,0.05,0.7,3,,5.1,1.0,1.0,1.0,1.0

 .   
Equilibrium points are the zeros of the 
nonlinear system of algebraic equations 
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which is obtained simply equating the 
right hand sides in (5) to zero. 
 
The dynamical system in (5) has some of 
its equilibrium points on the boundaries of 
the positive sub manifold. They are all 
unstable equilibriums:  
 
 
  UZYX ,,,  Eigenvectors 

E0 {0, 0, 0, 0} {3.,1.5, -0.7, 0.2} 
E1 {60, 0, 0, 0} {-3.,2.73,1.5,0.2} 
E2 {0, 0, 100, 0} {3.,-1.5,-0.7, 0.2} 
E3 {60, 0, 100, 0} {-3.,2.73,-1.5, 0.2} 
E4 {0, 0, 36.35, 72.70} {3.,-0.7, -0.06+0.42 

�, -0.06-0.42 �} 
E5 {70/33, 35.08/ w , 0, 

0} 
{1.5, 0.20 +1.28 �, 
0.20 -1.28 �, 0.2} 

E6 {60, 0, 36.35, 72.70} {-3., 2.7,-0.06+0.42 
�,-0.06-0.42 �} 

E7 {70/33, 35.08/ w , 
100, 0} 

{-1.5, 0.20 +1.28 
�,0.20 -1.28�, 0.2} 

E8 {2.43,20.21,0.30,41.
03} 

{0.24 +1.34 �, 0.24 
-1.34�,-0.13,-0.02} 

 
 
Our investigation also revealed that, there 
is a unique additional unstable inner 
equilibrium point E8 for each 76.1w . E8 
in the table is obtained for 77.1w  
 
 

5. CHAOTIC REGIONS ON w AXIS 
 
Numerical solutions with several initial 
data )}0(),0(),0(),0({ UZYX  investigated 
for several values of the parameter w. 
 

 
Table 1. Qualitative behavior of the 
solution for several values of the 
parameter w. 
 
In the following, the dynamics of the 
system will be investigated for the values 
of w as in the above table. Starting from a 
smaller value 01.0w , which is the 
predating rate of the specialist predatorY , 
for all initial states with 0U0  , we have 
an attractor limit cycle with 100 Z0,U  , 
with period 38.17T   as shown in Fig. 1a. 
For all initial states with 00 U , we have 
an attractor limit cycle with 0Z  , with 
period 59.17T  as shown in Fig. 1b.  
 

 
Fig. 2a.  Trajectories  projected on 3-
dimensional XYZ phase space when w=0.01 ,  

100 Z0,U   on the limit cycle with the 
period 38.17T , initvec ={70/33, 3508, 10, 0.}.  
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U=0. 
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0.05 Period doubling 
0.088 Chaos 
0.09 Period tripling 
0.10 Period doubling 
0.30 Chaos 
0.50 Period tripling 
0.92 Chaos 
0.9351 Period doubling 
0.97 Periodic solution 
1.00 Period doubling 
1.20 Periodic solution 
1.77 Two attractors with T=27.8 and 

T=14.2 
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Fig. 2b.  Trajectories  projected on 3-
dimensional XYU phase space when 
w=0.01 .  0Z   on the limit cycle with the 
period 59.17T , initvec ={70/33, 3508.`, 
100., .001}.  
 

 

Fig. 2.  Time plot of  )(tU . While the other 

three components are simple periodic 
functions, )(tU undergoes a period 

multiplication when w=0.0335. The period is 
.69.87T  The attractor is not sensitive to the 

initial conditions. 
 
 

 
 

Fig. 3.  (a) Time plot for )(tZ .   
    
 
 

 
   
Fig. 3.  (b) Time plot of )(tU .  They are not 
periodic while )(),( tYtX are periodic 
functions. For  w=0.045 dynamical system 
undergoes a chaotic state. 
 
 

 
 
Fig. 4.  Time plot of  )(tU . While the other 

three components are simple periodic 
functions, )(tU undergoes a period 

multiplication when w=0.0335. The period is 
.49.52T  The attractor is not sensitive to the 

initial conditions. 
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Fig. 5. Time plot of )(tU . )(),( tUtZ are not 

periodic while )(),( tYtX are simple periodic 

functions. For w=0.088 dynamical system 
undergoes a chaotic state. 
 
 

 
 
Fig. 6.  Time plot of )(tU . While the other three 

components are simple periodic functions, 
)(),( tUtZ  undergoes a period multiplication 

while )(),( tYtX are simple periodic functions 

when w=0.09. The period is 13.122T .  The 
attractor is not sensitive to the initial 
conditions. 
 
 

 
 
Fig. 7 Time plot of )(tU . While the other three 

components are simple periodic functions, 
)(tU undergoes a period multiplication when 

w=0.10. The period is .4.45T  The attractor 
is not sensitive to the initial conditions. 
 

 
 
Fig. 8.  Time plot of )(tU .  )(),( tUtZ  are not 

periodic while )(),( tYtX are simple periodic 

functions. For w=0.30 dynamical system 
undergoes a chaotic state. 
 

 
 
Fig. 9.  Time plot of )(tU . While the other two 

components are simple periodic functions, 
)(),( tUtZ  undergoes a period multiplication 

when w=0.50. The period is 5.29T  The 
attractor is not sensitive to the initial 
conditions. 
 

 
 
Fig. 10.  Time plot of )(tU .  )(),( tUtZ  are not 

periodic while )(),( tYtX are simple periodic 

functions. For w=0.92 dynamical system 
undergoes a chaotic state. 
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Fig. 11.  Time plot of  )(tU . While the other 

two components are simple periodic functions, 
)(),( tUtZ  undergoes a period multiplication 

when w=0.97. The period is .8.28T  The 
attractor is not sensitive to the initial 
conditions. 
 
 
 

 
 
Fig. 12.  Time plot of )(tU . While the other 

three components are also simple periodic 
functions when w=1.20. The period is .2.14T  
The attractor is not sensitive to the initial 
conditions. 
 

 
 
Fig. 13. .2.14T . For  w=1.77  (a) Time plot 
for )(tU  when  initvec = E8.. )(tU lives a period 

doubling . The period is .8.27T    
 

 
 

 
 
Fig. 13. .2.14T . For  w=1.77 (b) Time plot of

)(tU when initvec near  E7.  All components 

are simple periodic functions with period  
.2.14T  The attractor is sensitive to the 

initial conditions. 
 

 
6. DISCUSSION 

 
In this paper the chaos is searched in a 
sub manifold of the parameter space. 
Along the w axis of the predating rate of 
the specialist predatorY , around four 
points 

920.0,3000.0,088.0,045.0 4321  wandwww

we meet chaos. At each time chaos 
precedes period doublings. 
 
It is an interesting feature of the system 
that in all cases of chaos, the populations 
of pray )(tX and the specialist predator 

)(tY remains periodic, and the population 
of the generalist predator )(tU undergoes a 
chaotic regime, while only in two cases 

)(tZ undergoes a chaotic regime too.  
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