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Abstract. 
 
In this paper we present several mathematical models of tumor growth 
and angiogenesis expressed by  systems of ODE’s encoding the most 
essential observations and assumptions about the complex hierarchical 
interactive processes of tumor neo-vascularization (angiogenesis). The 
simplest modeling option presented merely captures the three 
independent variables mentioned earlier-tumor size N, total vessel 
volume V and the amount of protein P. We modify this model assuming 
that the protein is additionally consumed by growing vessels and obtain 
a model with protein consumption. Next models with time-delays are 
introduced. To make our models more realistic, two more compartments 
representing more complex vascularity and protein effects are 
introduced. Hence five dimensional models are obtained. 
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1. INTRODUCTION 
 

While there had been substantial 
achievements in the field, there has been 
made so little progress in the last three 
decades of war against cancer. In 1980’s 
there was a consensus in the biomedical 
research community that cancer 
progresses hazardously and, hence, does 
not yield to prediction at any level of 
accuracy. In general, it was believed 
that biological systems are too complex 
to be accurately retrieved by 
mathematical models. This declarable 
mistrust in the power of the 
biomathematics left the biomedical 
sciences lagging behind other sciences,  
 

 
 
as an immature sequel of experimental 
observations. 
 
During the same years bio 
mathematicians constructed among the 
others the resonance theory of 
population persistence in randomly 
fluctuating environments, which was 
later applied to cancer chemotherapy.  
  
 Macroscopic models are another set of 
efforts to the same direction. They 
assume logistic tumor growth do not 
take into account vessel maturation and 
don’t allow for the nutrient dependency 
secretion of proangiogenic factors. 
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Models describing vascular tumor 
system on three scales: molecules, cells, 
and macroscopic entities are not 
complete since it does not include 
maturation of new blood vessels. 
 
Other continuous models define three 
major processes together: tumor growth, 
growth factor production and vessel 
growth by order of complexity. 
 
Growth of malignant tumors beyond the 
diameter of 1 − 2mm critically depends 
on their neo-vascularization, which 
provides vital nutrients and growth 
factors, and also clears toxic waste 
products of cellular metabolism [12]. 
Indeed, the role of angiogenesis - the 
formation of new blood vessels by 
budding from existing ones - as a target 
for cancer therapy, is currently a focus of 
intensive research [12],[8],[19]. 
 
In order to establish successful anti-
angiogenic treatment rationale, the 
dynamics of angiogenesis must be better 
understood. These dynamics are very 
complex, involving many interacting 
oscillatory processes, which operate on 
several scales of time and space. Their 
essential constituents are briefly 
described below. 
 
Having reached a certain size and, 
therefore, a certain critical 
volume/surface ratio, a shortage of 
oxygen (denoted hypoxia) and nutrients 
is created within the tumor. Under 
hypoxia the tumor produces proteins, 
notably Vascular Endothelial Growth 
Factor (V EGF). Increasing V EGF levels 
lead to increased proliferation and 
mobility of endothelial cells, and, as a 
result, to increased formation of 
immature vessels by these cells. 
Consequently, the blood supply of the 
tumor is augmented, encouraging tumor 
proliferation [22],[11],[25],[23].  
 
The protein V EGF also ensures 
integrity of immature vessels, and its 
insufficiency leads to their regression 

[5],[18],[17]. Immature vessels undergo 
a process of maturation by attaching a 
layer of pericytes. Vessel maturation is 
enhanced by the binding of the protein 
Angiopoietin-1 (Ang1), which is secreted 
by tumor cells, to Tie2 receptors on 
endothelial cells [10],[24]. Both the 
immature vessels and the tumor produce 
the protein Angiopoietin-2 (Ang2), which 
blocks the Ang1−Tie2 bond, thus 
stopping the maturation process and 
inducing the reverse process - the 
destabilization of the mature vessels 
[21],[20],[1]. It appears, then, that 
Ang1/Ang2 ratio determines which of 
the processes - maturation or 
destabilization is the dominating one [2]. 
 
The present talk is devoted to the 
investigation of a simpler family of 
angiogenesis models which still captures 
the essential properties of the system. 
We introduce multi-parameter families 
time-delay ODE systems, which encode 
the basic known facts and assumptions 
concerning tumor induced angiogenesis 
processes. We believe that for these 
models it makes most sense to ask 
qualitative questions involving behavior 
of the system locally with respect to 
time. 
  
 

2. GENERAL ASSUMPTIONS OF 
THE MODELS.  

 
Each of the models herein described 
involves the following time dependent 
variables [1]: 
• the number of tumor cells or tumor 
size (denoted by N), 
• the concentrations of growth factors 
known to be involved in tumor 
angiogenesis, defined as P. For a more 
accurate description, P may be broken 
down into several growth factors 
(proteins) which may differ in effects 
and/or kinetics, 
• the volume of blood vessels feeding the 
tumor which, again, may either be 
defined separately as the volumes of 
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immature and mature vessels, or as the 
total of both, denoted by V . 
 
All modeling alternatives are systems of 
ordinary differential equations with or 
without time-delay. In all of these 
models we use ”sigmoid like” functions - 
smooth monotonous functions having a 
horizontal asymptote, e.g.  )(1/1 sxke  . 
These functions describe a response of 
the system to the relevant biological 
stimuli. The reason for such a choice of 
the response function is the 
experimental observation that, below 
and above certain thresholds, changes in 
the intensity of the stimuli have minor 
effects on the response. Between the 
threshold values (in the sensitivity 
region), the process rate monotonously 
depends on the stimuli value. In our 
analysis we use only the basic properties 
of sigmoidal functions and we do not 
expect their exact shape to be easily 
determined from experiments or 
otherwise. 
 
We assume that the tumor size 
dynamics are determined by availability 
of oxygen and nutrients. The amount of 
nutrients delivered to the tumor is 
proportional to the volume of blood 
vessels feeding the tumor, whether 
inside the tumor or in its close vicinity. 
To take this into account we use vessel 
density which may relate to immature 
vessels, mature vessels, or the total of 
both, denoted by E1, E2 or E, 
respectively. The vessel density is 
calculated by dividing the corresponding 
vessel volume by the tumor size E = V/N 
. To simplify our models we assume that 
vessel wall permeability (perfusion) is 
the same for immature and mature 
vessels. For the tumor size dynamics in 
all our models we assume the 
Malthusian law determined by 
 

)()(1 tNEfN     (1) 
 

where 1f  is an increasing sigmoid 
function capturing the processes of cell 
proliferation and death: 
 

0)(lim,0)( 101 


 xfEf
x

E   (2) 

 
For dynamics of protein (growth factor) 
compartments we assume that proteins 
are produced by tumor cells or immature 
vessels, and degraded by an intrinsic 
clearance process. Elaboration of the 
clearance process will be discussed later, 
suggesting the introduction of additional 
consuming elements, such as the 
forming vessels, into the model.  
 
We assume that the dynamics of vessel 
compartments are a superposition of 
four processes, some are contrasting 
some of the others: formation of 
immature vessels, regression of 
immature vessels, maturation of 
immature vessels and destabilization of 
mature vessels into immature vessels. 
We assume that these four processes are 
driven by sigmoid like responses, as 
described above, depending on specified 
proteins. These proteins are the stimuli 
mentioned earlier as the effectors of 
these functions. 
 
 
 

3. A THREE-DIMENSIONAL 
MODEL WITH NO TIME-
DELAY.  

 
The simplest modeling option presented 
merely captures the three independent 
variables mentioned earlier-tumor size 
N, total vessel volume V and the amount 
of protein P. The only thing that we 
assume about the protein is that it 
drives the vessel formation or regression 
in a sigmoidal way. The rate of change of 
N is determined by a Malthusian law 
sigmoidally depending on E 
(representing EVD, as defined earlier). 
The protein P is produced by the tumor 
at a rate sigmoidally dependent on E 
and is decaying at a constant positive 
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rate  . The rate of change of the vessel 
volume V is also  sigmoidally driven by 
the protein. Thus we have the system [1] 
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where 
• 1f  is the tumor cells proliferation rate; 
it is an increasing function of E and 
satisfies (2). 
• 2f  is the protein production rate; it is 
a decreasing function of E and satisfies 

0)(lim,0)( 2
x

2 


xfxf   (4) 

• 3f is the vessel growth rate; it is an 

increasing function of P and satisfies 

0)(lim,0)( 303 


 xfPf
x

P   (5) 

 
To simplify the analysis we make a 
substitution of variables NEV .  and 
get the system 
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      EXAMPLES 
 
As the functions satisfying conditions 
(2), (4) and (5)  
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For the parameter set  

.}1.,1.,2,5.0.,1.,1{},,,,,{ 31321 ddaaa
the system (6) has three equilibrium 
points: 

parmval={ },,,,,{ 31321 ddaaa   

.}1.,1.,2,5.0.,1.,1{parmval1   

 
Trivial critical point C0={0,0,0} 
Eigenvalues at C0: E0={-1,-1,.5} 
unstable saddle 

 
Smitrivial critical point   

}3/1,0,0{1 C  
Eigenvalues at C1: E1={-1,-.75,-.5} 
stable node 

 
Nontrivial critical point C2={2,1,1} 
Eigenvalues at C2: E2={-1.13+.76I,- 
1.13-.76I,.27} unstable saddle 

 
Dynamics of the system is sensitive to 
the initial conditions near unstable 
saddle points. Integration of the system 
for two initial conditions are shown 
belaow: 
 

 
Figure 1. For the initial point {2., 1., .9} 
system stabilizes at the stable node 

}3/1,0,0{1 C  

 
Figure 2. For the initial point {2., 1., 1.1} 
P(t) get stabilized at     , while N(t) and 
E(t) diverged towards large values.  
 
 
For another parameter set   

}2.,1.,1.,1.,1.,5{.},,,,,{ 31321 ddaaa the 
system (6) has two equilibrium points: 
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Trivial critical point C0={0,0,0} 
Eigenvalues at C0: E0={-1,-.5,-.5} 
stable node 

 
Nontrivial critical point C1={2,1,1} 
Eigenvalues at C1: E1={-.91+.87I,-
.91-.87I,.32} unstable saddle 

 
Dynamics of the system is sensitive to 
the initial conditions near unstable 
saddle points. Integration of the system 
for two initial conditions {1,1,1} are 
shown below: 
 

 
Figure 3. For the initial point {1., 1., 1.} 
system stabilizes at the stable node 
C0={0,0,0} 
 
 

 
Figure 4. For the initial point {5., 5., 5.} 
P(t) stabilized at     , while N(t) and E(t) 
diverged towards large values.  
 
 
 
 

4. A MODEL WITH PROTEIN 
CONSUMPTION.  

 
We can modify the model assuming that 
the protein is additionally consumed by 
growing vessels. Thus, for the dynamics 

of the protein compartment we modify 
the second equation in (3) [1] 
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where 
0)0(,0)(lim,0)(

x


 ccc fxfxf (9) 

 
 
 

5. MODELS WITH TIME-DELAYS.  
 
Two time-delays are introduced in (3): 1  
in the proliferation/death response to 
stimuli and 2 in the vessel 
formation/regression response to stimuli 
[1]. 
Let ),(),( 21 21

   tPPtEE then 

system (3) is modified, yielding: 
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EXAMPLE:  The system (10) is 
integrated with the parameter values 
parmval1 and time delays 10021  : 

 
 
Figure 5. For the initial point {2., 1., .9} 
system stabilizes at the stable node 

}3/1,0,0{1 C  
 
 
 

6. FIVE DIMENSIONAL MODELS.  
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To make our models more elaborate and 
realistic, we introduce more 
compartments representing more 
complex vascularity and protein effects 
[1]. First, the inclusive representation of 
vessels volume V is replaced by separate 
descriptions of the immature and 
mature vessel volumes denoted by 1V  

and 2V , respectively. The values of 
either vessel subpopulation will be 
separately analyzed. Hence, the model 
allows both maturation of immature 
vessels and destabilization of mature 
vessels. Secondly, the general term 
protein, denoted P , is now replaced by 
two specific proteins namely V EGF, 
denoted 1P  and Ang1, denoted 2P . We 
assume that V EGF is produced by the 
tumor at a rate sigmoidally dependent 
on the vessel density and decays at a 
constant rate 1 , and that Ang1 is 
produced by the tumor at a constant rate 
α and decays at a constant rate 2 .  
 
Note that another growth factor, Ang2, 
is not modeled here as an additional 
dimension. Rather, it is assumed to exist 
in a constant amount. Hence, it is 
represented as one of the constant 
parameters wherever relevant in the 
functions 321 ,, fff . Let us also 

introduce the characteristic time-delays 
as follows: 1  for tumor proliferation and 

death, 2 for immature vessel formation 

and regression, and 3 for mature vessel 

destabilization. We get the system: 
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where  satisfy (2,4,5) and 
• 4f  is the maturation rate, it is a 

positive increasing function of 2P . 

• 5f  is the destabilization rate, it is a 

positive decreasing function of 2P  and 
satisfies 

0)(lim 5
x




xf     (12) 

 
After making the substitutions  
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we get the system 
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Introduced above were several modeling 
suggestions describing angiogenesis, 
with or without time-delays. As 
demonstrated in examples, whenever 
time-delay was introduced into the 
tumor proliferation or the neo-
vascularization process, oscillatory 
behavior is observed. In contrast, a time-
delay in the mature vessels de-
stabilization process does not seem to be 
necessary for the existence 
of oscillations in the tumor-
volume/vessel-density system. This 
might mean that an appropriate 
candidate for describing the system in 
question is the alternative that includes 
time-delays in the tumor proliferation or 
angiogenesis process. 
 
Moreover, recall that for rationalizing 
the empirical results it was necessary to 
introduce a significant time-delay 
between the tumor and vessels 
processes. This might underline the 
significance of time-delays in tumor 
growth dynamics. It seems to us 
worthwhile to examine these results in 
the clinical context, that is, to check 
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whether or not one can control tumor 
growth by imposing (by use of certain 
drugs) time-delays in the processes neo-
vascularization. 
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