
56

SOUTHEAST EUROPE JOURNAL OF SOFT COMPUTING
Available online at www.scjournal.com.ba

Parallelization of genetic algorithms using Hadoop Map/Reduce

Dino Kečo a, Abdulhamit Subasi b

a Faculty of Engineering, International Burch University, 71000 Sarajevo, dino.keco@gmail.com
b Faculty of Engineering, International Burch University, 71000 Sarajevo, asubasi@ibu.edu.ba

Abstract—In this paper we present parallel implementation of genetic algorithm using map/reduce
programming paradigm. Hadoop implementation of map/reduce library is used for this purpose. We compare
our implementation with implementation presented in [1]. These two implementations are compared in solving
One Max (Bit counting) problem. The comparison criteria between implementations are fitness convergence,
quality of final solution, algorithm scalability, and cloud resource utilization. Our model for parallelization of
genetic algorithm shows better performances and fitness convergence than model presented in [1], but our
model has lower quality of solution because of species problem.

Keywords— genetic algorithm, parallelization, map/reduce, hadoop.

57

INTRODUCTION
Genetic algorithm is heuristic optimization method which

mimics the process of natural evolution. Optimization
problems like Traveling Salesman require a lot of computer
resources to be solved even if we use genetic algorithm as
optimization method. Because one computer machine is not
capable to resolve problems of this magnitude, parallel
implementation of genetic algorithm is one solution.

There are couple of techniques to implement parallel

genetic algorithm and two most popular are [7]:
 - Cluster nodes work on same population,
 - Each node in cluster has own population.

First implementation of parallel genetic algorithm is

presented in [1]. In this paper we are presenting second
implementation and results of comparison between these
two implementations. For parallelization of genetic
algorithm Hadoop Map/Reduce library is used.

This paper makes the following research contributions:

• New model for parallelization of genetic

algorithm,
• Implementation of that model with Hadoop

Map/Reduce library,
• Comparison with implementation presented in

[1].

Section 2 provides more detailed explanation of
Map/Reduce model. In section 3 we describe how genetic
algorithm could be implemented inside Map/Reduce model.
Section 4 provides implementation details with focus on
solving of One Max. We present scaling measurements of
these two implementations on Hadoop Map/Reduce cluster in
section 5 and we conclude in section 6.

MAP REDUCE MODEL
Map/Reduce model is first time proposed by Google [3] in

2004 and it is inspired by functional languages like List.
Map/Reduce model represent simplified way of parallelization
for all programs which are written in Map/Reduce spirit. In
Map/Reduce programming paradigm, the basic unit of
information is a (key; value) pair where each key and each
value are binary strings. The input to Map/Reduce algorithm is
set of (key; value) pairs. Operations on a set of pairs occur in
three stages: the map stage, the shuffle stage and the reduce
stage as shown on figure 1.

In the map stage, the mapper takes as input a single (key;

value) pair and produces as output any number of new (key;
value) pairs. It is crucial that the map operation is stateless -
that is, it operates on one pair at a time. This allows for easy

parallelization as different inputs for the map can be processed
by different machines.[9]

Figure 1: Operation phases in Map/Reduce programming model [8]

During the shuffle phase the underlying system that

implements Map/Reduce sends all of the values that are
associated with an individual key to the same machine. This
occurs automatically, and is seamless to the programmer. [9]

In the reduce stage, the reducer takes all of the values
associated with a single key k, and outputs a multi set of (key;
value) pairs with the same key, k. This highlights one of the
sequential aspects of Map/Reduce computation: all of the maps
need to finish before the reduce stage can begin. [9]

Since the reducer has access to all the values with the same
key, it can perform sequential computations on these values. In
the reduce step, the parallelism is exploited by observing that
reducers operating on different keys can be executed
simultaneously. Overall, a program in the Map/Reduce
paradigm can consist of many rounds of different map and
reduce functions performed one after another [2].

HOW PARALLELIZATION OF GA FIT INTO MAP/REDUCE
MODEL

In this section we present two models of parallel genetic

algorithms written in Map/Reduce programming spirit. First
model is presented in [1] and the second model is built as part
of this research. First model uses one map reduce phase for one
generation of genetic algorithm, and for each generation new
map reduce phase is executed, while second model uses only
one map reduce phase for all generations of genetic algorithm.

First model and its pseudo code are presented on figure 2.

On the figure it’s shown in which phase each part of pseudo
code is executed.

57

Figure 2: Pseudo code of GA model which uses one population for all
nodes in cluster

Most of details related to this model are shown by pseudo

code. One important detail related to this model is that it uses
chain of map reduce actions for each generation of genetic
algorithm. HDFS (Hadoop Distributed File System) is used as
a data transfer between each generation of GA. [1] This model
have big IO footprint because after each generation of GA full
population is saved to HDFS, and this cause big degradation of
performances.

Second model and its pseudo code are shown on figure 3. On
the figure it’s shown in which phase each part of pseudo code
is executed.

Figure 3: Pseudo code of GA model which uses different population for
each node in cluster

As shown in pseudo code for this model most of processing

has been moved from reduce phase to map phase. This change
reduces amount of IO footprint because all processing data is
kept in memory instead of HDFS, but drawback of this is that
we have different population for each node which leads to
species problem in genetic algorithm.

IMPLEMENTATION OF PARALLEL GA OVER MAP/REDUCE

FRAMEWORK FOR ONE MAX PROBLEM

For testing of genetic algorithm we have been using One

Max problem because same problem was solved in [1]. Our
implementation of genetic algorithm supports any type of
function to be optimized because function class is plug-able
using configuration of genetic algorithm.

Class which implements One Max function for distributed
genetic algorithm model is

public class OneMax extends AbstractFitnessFunction {
 public OneMax(List<VariableRange> variableRanges) {
 super(variableRanges);
 }
 @Override
 public Double evaluate(List<Double> args) {
 if(args!=null && args.size() < 1){
 throw new
IllegalArgumentException("OneMax is multivariable function,
at least one argument is required!");
 }
 this.args = args;
 Double value = 0.0;
 for(Double arg : args){
 value += arg;
 }
 return value;

 }
}

This function is configured while map reduce job is executed
using ga.optimizing.function configuration property.

SCALING MEASUREMENTS ON HADOOP CLUSTER

In this section we are testing performances of two different
implementations of genetic algorithms. For those purposes we
have been using 10 nodes cluster (i7 - 4 cores 2.6 GHz, 4GB

58

DDR3 RAM, 300GB HDD) with CentOS 5.6 operating system
and Hadoop CDH3u0 distribution. We have performed two
tests of both models are compared results

• Convergence of genetic algorithm with constant
number of map reduce tasks,

• Scalability of genetic algorithm with constant load per
node in cluster.

Convergence of genetic algorithm with constant number of
map reduce tasks

With this test we have track best fitness in population of
One Max problem over iterations of genetic algorithm and
compared results from both models. Results of comparison are
presented on figure 4.

Figure 4: Comparison of two models of parallel GA from solution
convergence aspect; option 1 – All nodes uses same population; option 2 –

each node has its own population

In this test parameters of genetic algorithm are:

• crossover probability = 0.7
• mutation probability = 0.01
• population size = 5000
• number of mappers/reducers = 20

As results show option 2 has better convergence of fitness

because it has multiple mappers, which are working on
different populations, which causes that solution is found much
earlier.

Scalability of genetic algorithm with constant load per node
in cluster

In second test we compared scalability of two models
described in this paper. Results of comparison are presented on
figure 5.

Figure 5: Comparison of two models of parallel GA from scalability

aspect; option 1 – All nodes uses same population; option 2 – each node
has its own population

In second test parameters of genetic algorithm are:

• crossover probability = 0.7
• mutation probability = 0.01
• population size = 5000
• number of variables for One Max problem = 10000
• number of iterations = 200

As presented on figure 5 option 2 is much faster than option 1
because IO footprint is reduced because data is not written to
HDFS. Option 1 and 2 can scale to infinity by adding more
hardware resources into cloud.

Acknowledgments of people, grants, funds, etc. should be

placed in a separate section before the reference list. The
names of funding organizations should be written in full. DO
NOT place acknowledgment on the first page of your paper or
as a footnote.

CONCLUSION AND FUTURE WORK
Both of models which are described in this paper can easily

scale and those models could be used for solving any complex
problem just by adding more hardware resources. First model
which is presented in [1] is slower but doesn’t have species
problem like other model. In future work both models should
be used for solving different problems, like TSP (Traveling
Salesman Problem). Some other parts of map reduce model,
like combiner, are not used in these models of GA but those
parts could be used to improve models even more.

REFERENCES

Both of models which are described in this paper can easily

scale and those models could be used for solving any complex
problem just by adding more hardware resources. First model
which is presented in [1] is slower but doesn’t have species
problem like other model. In future work both models should
be used for solving different problems, like TSP (Traveling
Salesman Problem). Some other parts of map reduce model,

59

like combiner, are not used in these models of GA but those
parts could be used to improve models even more

[1]Scaling Genetic Algorithms using MapReduce - Abhishek Verma,
XavierLlor'a, David E. Goldberg, Roy H. Campbell

[2]Adapting scientific computing problems to clouds using
MapReduce - Satish Narayana Srirama, Pelle Jakovits, Eero Vainikko

[3]MapReduce: Simplified Data Processing on Large Clusters -
Jeffrey Dean and Sanjay Ghemawat

[4]Scaling Populations of a Genetic Algorithm for Job Shop
Scheduling Problems using MapReduce - Di-Wei Huang, Jimmy Lin

[5]Scheduling divisible MapReduce computations - J. Berlińska, M.
Drozdowski

[6]MRPGA: An Extension of MapReduce for Parallelizing Genetic
Algorithms - Chao Jin, Christian Vecchiola and Rajkumar Buyya

[7]Parallel Genetic Algorithms - R. Shonkwiler

[8]Map Reduce web page - http://hadoop.apache.org/mapreduce/

[9]A Model of Computation for MapReduce - Howard Karlo,
Siddharth Suri, Sergei Vassilvitskii

[10]Raghuraman, R., Penmetsa, A., Bradski, G., and Kozyrakis, C.
Evaluating mapreduce for multi-core and multiprocessor systems.
Proceedings of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture.

http://hadoop.apache.org/mapreduce/

	Introduction
	MAP REDUCE MODEL
	How parallelization of GA fit into Map/Reduce model
	Scaling measurements on Hadoop cluster
	Conclusion and future work
	REFERENCES

