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ABSTRACT 
 

Abstract  —  An Asset-Liability Management model with a novel strategy for controlling risk of underfunding 
is presented in this paper. The basic model involves Multi-Period decisions (portfolio optimization) and deals 
with the usual uncertainty of investment returns and future liabilities. Therefore, is it well suited to a stochastic 
programming approach.  
We consider the problem of rebalancing policy to accomplish some investment’s criteria. Transaction costs 
have also been a subject of concern in this paper. In particular, a large amount of transactions usually make 
asset price move in an unfavorable direction. Therefore, the first problem neglects transactions cost while the 
second does not.  
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1. INTRODUCTION 
 
The Asset-Liability Management (ALM) problem has 
crucial importance to pension funds, insurance companies 
and banks where business involves large amount of 
liquidity. Indeed, the financial institutions apply ALM to 
guarantee their liabilities while pursuing profit. The 
liabilities may take different forms: pensions paid to the 
members of the scheme in a pension fund, savers’ deposits 
paid back in a bank, or benefits paid to insurers in the 
insurance company. A common feature of these problems is 
the uncertainty of liabilities and the resulting risk of 
underfunding. The other major uncertainty originates from 
asset returns. Together they constitute a nontrivial difficulty 
in how to manage risk in the model applied by the financial 
institution. The need for multi-period planning additionally 
complicates the problem. 
Stochastic programming provides a general purpose-
modeling framework, which captures the real-world features 
such as turnover constraints, transaction costs, risk aversion, 
limits on groups of assets and other consideration. However, 
the optimization model turns out to be intractable for the 
enormous number of decision variables, especially for the 
multi-stage problems.  
One of the first industrially applied models of this type was 
the stochastic linear program with simple recourse 
developed by Kusy and Ziemba in 1986. This model 
captured certain characteristics of ALM problems: it 
maximized revenues for the bank in the objective under 
legal, policy, liquidity, cash flow and budget constraints to 
make sure that deposit liability is met as much as possible. 
Under computational limits at the time when it was 
developed, this model took the advantage of stochastic 
linear programming so as to be practical even for the large 
problems faced in banks. 
In this paper we demonstrate how ALM model can be 
applied for asset allocation in financial markets. We assume 
a very simple model with two “assets”; stocks and bonds. 
In a real world the trading of financial assets comes at a 
cost. Stockbrokers and other financial intermediaries charge 
their customers a fee when selling and buying financial 
assets. Therefore, the first problem neglects transaction cost 
while the second does not.  
 

 
Figure 1: A scenario tree for a multi-stage stochastic program 
 

Moreover, it is important for decision makers to rebalance 
the portfolio during the investment period as they may wish 
to adjust the asset allocations according to updated 
information on the market. The strategy which is currently 
optimal may not be optimal any more as the situation 
changes. Thus it is important to reconsider the strategy and 
make the necessary change in order to remain in the optimal 
position. Taking this into account, the problem is multi-
period and at the beginning of each period, new decisions 
are made. Such a multi-stage ALM model allows different 
decisions through the investing process.  
To make it easier to model, we consider the problem stage 
by stage and with portfolio rebalancing done at the 
beginning of each stage. Also, the uncertainties of asset 
returns are implemented with discrete distributions, in 
which case an event tree is used to capture the uncertainties 
in multiple stages throughout the whole decision process, 
e.g. as shown in Figure 1.The nodes at each stage represent 
possible future events. Asset returns, liabilities and cash 
deposits are subject to uncertain future evolution. 
Meanwhile, the asset rebalancing is done after knowing 
which value the asset returns and liabilities take at each 
node. 
 
The paper is organized as follows: in Section 2 we provide a 
classification of life-cycle asset allocation models based on 
the type of available solutions. Section 3 describes the 
stochastic programming model, in particular the formulation 
of the objective, the optimization approach for its 
linearization, and the generation of scenarios.  

2. OVERVIEW OF ASSET ALLOCATION MODELS 
 
The classical treatments of strategic asset allocation can be 
traced back to Samuelson (1969) and Merton (1969, 1971). 
In the light of Markowitz’ seminal papers on single-period 
portfolio selection, the early literature focused on conditions 
leading to the optimality of myopic policies, i.e., conditions 
under which portfolio decisions for multi-period problems 
coincide with those for single period problems. In addition, 
the lack of computing power lead to formulate models 
driven by the quest for closed form solutions. To achieve 
these objectives, rather restrictive assumptions were made, 
and many of these models’ results turned out to be 
inconsistent with conventional wisdom as expressed by the 
so-called Samuelson puzzle: whereas one of the main results 
from early multi-period portfolio models is that the fractions 
of risky assets are constant over time, this contradicts the 
advice obtained from many professionals in practice that 
investors should hold a share of risky assets which declines 
steadily as they approach retirement (often called the age 
effect). Since then, many researchers have tried to resolve 
this puzzle which is mainly rooted in some of the 
(simplifying) assumptions used in early models (fixed 
planning horizon, time-constant investment opportunities, 
no intermediate consumption, etc.). 
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Research in the area of life-cycle asset allocation models 
regained momentum in the early 1990s for two main 
reasons: first, a number of economic factors increased the 
number of people with sizeable wealth to invest (the 
“generation of heirs”), coupled with increased uncertainty 
about the security of public pension systems. Second, the 
enormous increase in computer power enabled the solution 
of models with more realistic assumptions. A number of 
additional features have been added to the classical models, 
in many cases with the goal of resolving the Samuelson 
puzzle: stochastic labor income, time-varying investment 
opportunities, parameter uncertainty (with and without 
learning), special treatment of certain asset classes (real 
estate), and habit formation, to name just the most important 
developments. 
In contrast to other approaches in the literature using non-
linear optimization (see, e.g., Blomvall and Lindberg 2002; 
Gondzio and Grothey 2007), we use multi-period stochastic 
linear programming (SLP) to solve the problem of optimal 
life-cycle asset allocation and consumption. This method 
has been explicitly chosen with the practical application of 
the approach in mind. Many features which are considered 
important for investment decisions in practice can be easily 
incorporated when using SLP. For example, personal 
characteristics of the investor can be taken into account 
(e.g., mortality risk, risk attitude, retirement, future cash 
flows for major purchases or associated with other life 
events). Combined with the availability of efficient solvers, 
this explains why the SLP approach has been successfully 
applied to a wide range of problems (see, e.g., Wallace and 
Ziemba 2005). To nest classical analytical results from this 
area within our model, we maximize expected utility of 
consumption over the investor’s lifetime and expected 
utility of bequest rather than other objectives which can be 
implemented more easily (e.g., piecewise linear or quadratic 
penalty functions, or minimizing CVaR). 
An important reference for the present paper is Campbell et 
al. (2003). They model asset returns and state variables as a 
first-order vector autoregression VAR(1) and consider 
Epstein–Zin utility with an infinite planning horizon. 
Additional assumptions include the absence of borrowing 
and short-sale constraints. Linearizing the portfolio return, 
the budget constraint, and the Euler equation, they arrive at 
a system of linear-quadratic equations for portfolio weights 
and consumption as functions of state variables. This system 
of equations can be solved analytically, yielding solutions 
which are exact only for a special case (very short time 
intervals and elasticity of intertemporal substitution equal to 
one), and accurate approximations in its neighbourhood. 
The SLP used in the present paper has been applied 
successfully to a number of related problems. To cite only a 
few examples, there are applications in insurance (Cariño 
and Ziemba 1994, 1998; Cariño et al. 1998), and the 
pension fund industry (e.g., Gondzio and Kouwenberg 
2001). Zenios (1999) surveys large-scale applications of 
SLP to fixed income portfolio management. General aspects 
of applying such models in a strategic asset allocation 

context are discussed in Ziemba and Mulvey (1998)), Pflug 
and Swietanowski (2000), Gondzio and Kouwenberg 
(2001), Wallace and Ziemba (2005), and Geyer and Ziemba 
(2007). Particular aspects that are relevant in a life-cycle 
portfolio context are discussed in Geyer et al. (2007). 

3. MODEL DESCRIPTIONS 
 

Asset-liability management (ALM) models assist financial 
institutions in decision making on asset allocations 
considering full use of fund and resources available. The 
model aims to maximize the overall revenue, sometimes as 
well as revenue at intermediate stages, with restrictions of 
risk. Risk in the ALM problems is present in two aspects: a 
possible loss of investment and missing the ability to meet 
liabilities. The returns of assets and the liabilities are both 
uncertain. It is essential in ALM modelling to deal with 
uncertainties as well as with risks. Stochastic programming 
approach is naturally applicable to problems which involve 
uncertainties. 
 

3.1 A two-stage model: asset- liability management 
 
The best way to introduce multistage stochastic models is a 
simple asset liability management (ALM) model. We have 
an initial wealth W0, that should be properly invested in 
such a way to meet a liability L at the end of the planning 
horizon H. 
If possible, we would like to own a terminal wealth WH 
larger than L; however, we should account properly for risk 
aversion, since there could be some chance to end up with a 
terminal wealth that is not sufficient to pay for the liability, 
in which case we will have to borrow some money. 
A nonlinear, strictly concave utility function of the 
difference between the terminal wealth WH, which is a 
random variable, and the liability L would do the job, but 
this would lead to a nonlinear programming model. 
As an alternative, we may build a piecewise linear utility 
function like the one illustrated in Fig. 1 

 
Fig. 1 Piecewise linear concave utility function. 
 
The utility is zero when the terminal wealth WH matches 
the liability exactly. 



51 
 

If the slope r penalizing the shortfall is larger than q, this 
function is concave (but not strictly). 
The portfolio consists of a set of 2 assets. For simplicity, we 
assume that we may rebalance it only at a discrete set of 
time instants t = 1, ... , H-1, with no transaction cost; the 
initial portfolio is chosen at time t = 0, and the liability must 
be paid at time H. 
Time period t is the period between time instants t - 1 and t. 
In order to represent uncertainty, we may build a tree like 
that in Fig. 2. , which is a generalization of the two-stage 
tree. Each node nk in the tree corresponds to an event, where 
we should make some decision. We have an initial node n0 
corresponding to time t = 0. 
 

 
           Fig. 2. Scenario tree for a simple asset- liability management 
problem. 
 
Then, for each event node, we have two branches; each 
branch is labeled by a conditional probability of occurrence, 
P(nk|ni), where ni = a(nk) is the immediate predecessor of 
node nk. Here, we have two nodes at time t = 1 and four at 
time t = 2, where we may rebalance our portfolio on the 
basis of the previous asset returns. 
Finally, in the eight nodes corresponding to t = 3, the leaves 
of the tree, we just compare the terminal wealth with the 
liability and evaluate the utility function. 
Each node of the tree is associated with the set of asset 
returns during the corresponding time period. 
A scenario consists of an event sequence, i.e., a sequence of 
nodes in the tree, along with the associated asset returns. 
We have 8 scenarios in Fig. 2. 
For instance, scenario 2 consists of the node sequence (n0, 
nl, n3, n8). 
The probability of each scenario depends on the conditional 
probability of each node on its path. 
If each branch at each node is equiprobable, i.e., the 
conditional probabilities are always 1/2, each scenario in the 

figure has probability ps = 1/8, for s = 1, ...,8. The branching 
factor may be arbitrary in principle; the more branches we 
use, the better our ability to model uncertainty; 
unfortunately, the number of nodes grows exponentially 
with the number of stages, as well as the computational 
effort. 
At each node in the tree, we must make a set of decisions. In 
practice, we are interested in the decisions that must be 
implemented here and now, i.e., those corresponding to the 
first node of the tree; the other (recourse) decision variables 
are instrumental to the aim of devising a robust plan, but 
they are not implemented in practice, as the multistage 
model is solved on a rolling-horizon basis. This suggests 
that, in order to model the uncertainty as accurately as 
possible with a. limited computational effort, a possible idea 
is to branch many paths from the initial node, and less from 
the subsequent nodes. Each decision at each stage may 
depend on the information gathered so far, but not on the 
future; this requirement is called a. nonanticipativity 
condition. Essentially, this means that decisions made at 
time t must be the same for scenarios that cannot be 
distinguished at time t. 
To build a model ensuring that the decision process makes 
sense, we can associate decision variables with nodes in the 
scenario trees and write the model in a way that relates each 
node to its predecessors. 
Let us now introduce  the following numerical data: 
• The initial wealth is 55. 
• The target liability is 80. 
• There are two assets, say, stocks and bonds; hence, I = 2. 
• In the scenario tree of Fig. 2. we have up- and 
downbranches; in the (lucky) upbranches, total return is 
1.25 for stocks and 1.14 for bonds; in the (bad) 
downbranches, total return is 1.06 for stocks and 1.12 for 
bonds. We see that bonds play the role of safer assets here. 
We also see that returns are a sequence of i.i.d. random 
variables, but more realistic scenarios can be defined. 
• The reward rate q for excess wealth above the target 
liability is 1. 
• The penalty rate r for the shortfall below the target liability 
is 4. 
The problem taken in this paper is a example given by P. 
Brandimarte (2011) in Quantitative Methods: An 
Introduction for Business Management. We formulated the 
problem using the Wolfram Mathematical Programming 
System.  
 

3.1.1 Variables, Objective and Constrains 
 
The elementary building block of any objective function is a 
measure of wealth at T, the last time step at which 
investment decision are made.  
The following notation and decision variables are used in 
the model formulation: 
• N is the set of event nodes; in our case 
N = {n0, n1, n2, …, n14} 
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• Each node n Є N, apart from the root node n0, has a 
unique direct predecessor node, denoted by a(n): for 
instance, a(n3) = n 
• There is a set S ∩N of leaf (terminal) nodes; in our case 
S = {n7, …, n14} 
 • For each node s Є S we have surplus and shortfall 
variables ws+ and ws_, related to the difference between 
terminal wealth and liability. 
• There is a set T ∩ N of intermediate nodes, where 
portfolio rebalancing may occur after the initial allocation in 
node no; in our case 
T = {n1, n2, …, n6}  
• For each node n Є{n0} U T there is a decision variable xin, 
expressing the money invested in asset i at node n. 
With this notation, the model may be written as follows: 
 

  
where Rin is the total return for asset i during the period that 
leads to node n, and πs is the probability of reaching the 
terminal node s Є S; this probability is the product of all the 
conditional probabilities on the path that leads from root 
node no to leaf node s. 
 

3.1.2 Numerical Results 
 
 This is an LP model that may be easily solved by the 
simplex algorithm, resulting in the solution of Table 1. We 
may notice that in the last period the portfolio is not 
diversified, since the whole wealth is allocated to one asset, 
and we should wonder if this makes sense. Actually, it is a 
consequence of two features of this toy model: 
 

• We are approximating a nonlinear utility function 
by a piecewise linear function, and t his may imply 
"local" risk neutrality, so that we only care about 
expected return; we should use either a nonlinear 
programming model or a more accurate 
representation of utility with more linear pieces. 

 
 
 
 
 
 
 

 
Table 1. Investment strategy for a simple ALM problem. 
 
Node Stocks Bonds 
n0  
  

44.793  13.5207 

n1 65.0946 2.16814 
n2 36.7432 22.368 
n3 83.8399 0 
n4 0 74.286 
n5 0 74.286 
n6 64 0 
 
 

• The scenario tree has a very low branching factor, 
and this does not represent uncertainty accurately. 

However, the portfolio allocation in the last time period is 
not necessarily a critical output of the model: the real stuff 
is the initial portfolio allocation. As we pointed out, the 
decision variables for future stages have the purpose of 
avoiding a myopic policy, but they are not meant to be 
implemented. 

3.2 A two-stage model: asset- liability management with 
transaction cost 

 
The stochastic programming approach can efficiently solve 
the most general models, where transaction costs need to be 
considered, and the returns distributions have general serial 
dependency.  
The assumptions and the limitations behind this extended 
model are the following: 
• We are given a set of initial holdings for each asset; this is 
a more realistic assumption, since we should use the model 
to rebalance the portfolio periodically, according to a 
rolling-horizon strategy. 
• We take proportional (linear) transaction costs into 
account; the transaction cost is a percentage c of the traded 
value, for both buying and selling an asset. 
• We want to maximize the expected utility of the terminal 
wealth.  
• There is a stream of uncertain liabilities that we have to 
meet. 
• We do not consider the possibility of borrowing money; 
we assume that all of the available wealth at each 
rebalancing period is invested in the available assets; 
actually, the possibility of investing in a risk-free asset is 
implicit in the model. 
• We do not consider the possibility of investing new cash at 
each rebalancing date (as would be the case, e.g. , for a 
pension fund). 
Some of the limitations of the model may easily be relaxed. 
The important point we make is that when transaction costs 
are involved, we have to introduce new decision variables to 
express the amount of assets (number of shares, not the 
monetary value) held, sold, and bought at each rebalancing 
date.  
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3.2.1 Variables 

 
We now introduce our notation and key variables which are 
similar to that used in the previous ALM formulation.  I is 
the number of assets the investor can choose from. t denotes 
stages (points in time) and runs from t = 0 (now) to t = H. 
The following (decision) variables are used in the model 
formulation: 
   xi

n≥0 (t = 1,…, H− 1; i=1,. . . ,I) …… the amount of asset 
i we hold at node n 
   zi

n≥0  (t = 1,…, H− 1; i=1,. . . ,I )…….the amount of asset 
i purchased at node n. 
   yi

n≥0  (t = 1,…, H− 1; i=1,. . . ,I )……. the amount of 
asset i sold at node n. 
   Ws≥0 (s=1,…..8)……………………… the wealth at 
terminal node s Є S. 
 
And the notations are: 
• N is the set of nodes in the tree; n0 is the root node. 
• The (unique) predecessor of node n ЄN\{n0} is denoted by 
a(n); the set of terminal nodes is denoted by S; as in the 
previous formulation, each of these nodes corresponds to a 
scenario, which is the sequence of event nodes along the 
unique path leading from n0 to s Є  S, with probability πs. 
• T = N\({n0} S) is the set of intermediate trading nodes. 
• Ln is the liability we have to meet in node n Є N; liabilities 
are node dependent and stochastic. 
• C is the percentage transaction cost. 
• hi

n0 is the initial holding for asset i = 1, ... , I at the root 
node. 
• Pi

n is the price for asset i at node n. 
• zi

n is the amount of asset i purchased at node n. 
• yi

n is the amount of asset i sold at node n. 
• xi

n is the amount of asset i we hold at node n, after 
rebalancing. 
• Ws is the wealth at terminal node s E S. 
• u(w) is the utility for wealth w; this function is used to 
express utility of terminal wealth. 
 

3.2.2 Objective and Constraints 
 

Taking in consideration the notation in Sec.3.2.1, we may 
write the following model:  
 

 

The objective  (13.28) is to maximize the expected utility of 
wealth at H (terminal wealth).  This is a generic objective 
function.  
Equation (13.29) expresses the initial asset balance, taking 
the current holdings into account; the asset balance at 
intermediate trading dates is taken into account by Eq. 
(13.30).  
Equation (13.31) ensures that enough cash is generated by 
selling assets in order to meet the liabilities; we may also 
reinvest the proceeds of what we sell in new asset holdings; 
note how the transaction costs are expressed for selling and 
purchasing. Equation (13.32) is used to evaluate terminal 
wealth at leaf nodes; note here that we have not taken into 
account the need to sell assets in order to generate the cash 
required by the last liability; but this would make only sense 
if the whole fund is liquidated at the end of the planning 
horizon. 
 

3.2.2 Numerical Results 
 

Do the costs really have an influence on the major 
rebalancing at the end of each year? 
If we compare the allocation of the money in Table 2 and 
the Table 1 from Sec.3.1.2,  we see that the expected 
rebalancing of the investment portfolio is actually 
increasing. This is somewhat surprising and may be an 
indication that transaction costs are no the most likely 
explanation for why investors are not performing a major 
rebalancing of their portfolio at the end/beginning of each 
year. However, this is a case for small transaction costs. The 
expected rebalancing of the investment decreases when 
increasing the proportional transaction cost. (Fleten, Stein-
Erik and Lindset, Snorre 2007). 
 
Table 2 Investment strategy for a simple ALM problem 
Node Stocks Bonds 
n0    4851.74 0 
n1 0 2580.56 
n2 5273.62 0 
n3 0 3082.32 
n4 0 3061.96 
n5 0 3028.52 
n6 6563.65 0 
 
The most important point in our model is that we have 
assumed that the liabilities must be met. This may be a very 
hard constraint; if extreme scenarios are included in the 
formulation, as they should be, it may well be the case that 
the model above is infeasible. Therefore, the formulation 
should be relaxed in a sensible way; we could consider the 
possibility of borrowing cash; we could also introduce 
suitable penalties for not meeting the liabilities. 
In principle, we could also require that the probability of not 
meeting the liabilities is small enough; this leads to chance-
constrained formulations. 
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4. CONCLUSION 
 
The literature on financial optimization models is vast and 
dates back to the seminal contribution of Markowitz (1952). 
Four alternative modelling approaches have emerged as 
suitable frameworks for representing financial optimization 
problems. They are mean-variance models, discrete-time 
multi-period models, continuous-time models, and 
stochastic programming. The mean-variance framework of 
Markowitz (1952) is widely considered as the starting point 
for modern research about portfolio optimization. Although 
this kind of model gets profound insight into the problem, it 
is of limited use in practice because of two major 
drawbacks. Firstly, variance is not always a good risk 
measure for investors; Secondly, a single-period model 
might be inappropriate for multi-period investment 
problems with long horizons. Continuous-time models and 
discrete-time models solved with dynamic programming 
and optimal control can provide good qualitative insights 
about fundamental issues in investments and ALM.  
The stochastic programming approach for financial 
optimization can be considered as a practical multi-period 
extension of the normative investment approach of 
Markowitz (1952). The advantage of stochastic 
programming models for multi-period investment and ALM 
problems is that important practical issues such as 
transaction costs, multiple state variables, market 
incompleteness, taxes and trading limits, regulatory 
restrictions and corporate policy requirements can be 
handled simultaneously within the framework. Of course 
this flexibility comes at a price and stochastic programming 
also has a drawback. 
In current application, the methods of output analysis 
address mainly the two-stage (multi period) stochastic 
programs. At the same time, Zenious et.al. (1998) validation 
experiments provide and evidence that even three-stage 
stochastic programs may outperform significantly the 
existing static models.  

5. SUGGESTIONS FOR FUTURE WORK 
 
 There are still a lot of interesting topics for further 
investigations. Some of them are mentioned as follows. 
To character the realistic problems, it is very important to 
set up stochastic programming models that incorporate more 
consideration of uncertainties. For example, to the portfolio 
selection problem, in addition to the usual interest rate 
changes, uncertainty in the timing and amount of cash 
flows, changes in the default and other risk premia and so 
on should be considered. 
To the ALM, effort should be given to expand the 
applicability of stochastic programming to address 
enterprise-wide risk management problems. 
When generating scenarios, an important issue is how to 
measure the approximation error of the returns in the event 
tree compared to the true underlying distribution. Once 
appropriate measures have been identified, one could try to 

develop methods for constructing event trees that minimize 
the approximation error (assuming the size of the event tree 
is fixed). A promising first step in this direction is made by 
Pflug and Swietanowski (1998). 
Besides, the present boom of large-scale real-life 
applications has brought new challenging questions. An 
important task is an adequate reflection of the dynamic 
aspects, including further development of tractable 
numerical approaches. Additional problems are related with 
the fact that the probability distribution P is rarely known 
completely and/or that it has to be approximated for reasons 
of numerically tractability.  The task is to generate the 
required input, i.e., to approximate P bearing in mind the 
required type of the problem ( J.Dupacova, G.Consigli, 
S.W.Wallace , 2000) 
These methods have to be tailored to the structure of the 
problem and they should also reflect the source, character 
and precision of the input data. 
An extensive research in multistage stochastic programming 
is an important complex task of the day. 
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