
31 
 

SOUTHEAST EUROPE JOURNAL OF SOFT COMPUTING 
Available online at www.scjournal.com.ba 

Application of Ensemble Machines of Neural Networks to 
Chromosome Classification  

 
 

 
M. Can a, S. Gagula Palalić b 

a Faculty of Engineering, International University of Sarajevo,  
Hrasnička Cesta 15, 71200 Sarajevo 

Bosnia and Herzegovina,  
mcan@ius.edu.ba 

b Faculty of Engineering, International University of Sarajevo,  
Hrasnička Cesta 15, 71200 Sarajevo 

Bosnia and Herzegovina,  
sadina@ ius.edu.ba   

Abstract— This work presents approaches to the automatic classification of metaphase chromosomes using several perceptron 
neural network techniques on neural networks function as committee machines. To represent the banding patterns, only 
chromosome gray level profiles are exploited. The other inputs to the ensemble machines of the network are the chromosome size 
and centromeric index. It is shown that, without much effort, the classification performances of the four networks are found to be 
similar to the ones of a well-developed parametric classifier. Four parallel networks trained for the four different aspects of the 
data set, the gray level profile vector, Fourier coefficients of gray level profiles, 3D data of chromosome length – centromeric 
index – total gray levels, and 4D data obtained by the addition of average gray levels. Then the classification results of differently 
trained neural networks (i.e., experts), are combined by the use of a genuine ensemble-averaging to produce an overall output by 
the combiner. We discuss the flexibility of the classifier developed, its potential for development, and how it may be improved to 
suit the current needs in karyotyping. 
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INTRODUCTION 
      For detecting genetic abnormality, investigation of 
chromosomes in human cell nuclei is an essential procedure in 
many fields of research, damage due to environmental factors, 
or diagnosis of cancer are a few of them (Errington 1993). In 
particular, for clinical purposes, a karyotype cells is required 
in which chromosomes must be assigned to one of 24 classes 
(Paris Standardization Conference 1971). Although this task 
of classification is highly skilled in recent years, automated 
karyotyping systems are developed, a number of such systems 
are available commercially and in use in clinical laboratories 
(Lundsteen, and Martin 1989), it still contains substantial 
expert human work of tedious and repetitive nature. 
 
      The main part in automated systems is the classification of 
chromosomes based on features that can be measured from the 
digitized cell image, such as that in Figure 1. 

 
FIG. 1. Digital image of a metaphase cell showing G-banded chromosomes 
 
      In approaches to automatic chromosome classification in 
addition to using the important features of chromosome size 
and centromere position, some representation of the 
chromosome banding pattern, often in the form of a density 
profile projected onto the chromosome's centre line are used 
as in Figure 2. 
 

 
FIG. 2. Digitized chromosome image and density profile projected onto the 
chromosome's centre line 

 
      Chromosome size and overall density vary significantly 
between cells, but these differences can be compensated in a 
straightforward manner by certain normalizations. The 
banding patterns also vary considerably in their details in 
chromosomes of the same class from different cells. To 
accommodate these differences, in this article averaging, and, 
Fourier analysis of gray level profiles are found to be useful 
along the implementation of ensemble machine neural 
networks. 
      Neural network classifiers have been shown to be highly 
adaptable and capable of generalizing to decide about classes 
of chromosomes based on training data (Baum 1998; Haykin 
1994). They have been applied in classification tasks where 
classical pattern recognition methods have not been applied or 
have been unsuccessful (Can, et.al. 2011a, Can, et.al. 2011b, 
Savatić et.al. 2011, Selman et. al. 2011, Jamak et.al. 2012). In 
applying an ensemble machines network to chromosome 
classification, we have the opportunity to develop a novel and 
potentially superior classifier of committee machines. We also 
compared the performance of this neural network with that of 
a more conventional classifiers in this well-studied domain. 

ENSAMBLE MACHINES AS A NEURAL NETWORK 
CLASSIFIER 

      As the base topology of artificial neural network 
committee machines ARE used in this work. In committee 
machines approach, a complex computational task is solved 
by dividing it into a number of computationally simple tasks 
and then combining the solutions to those tasks. In supervised 
learning, computational simplicity is achieved by distributing 
the learning task among a number of experts, which in turn 
divides the input space into a set of subspaces. The 
combination of experts is said to constitute a committee 
machine. Basically, it fuses knowledge acquired by experts to 
arrive at an overall decision that is supposedly superior to that 
attainable by anyone of them acting alone. The network 
structure considered therein consisted of a layer of elementary 
perceptrons followed by a vote-taking perceptron in the 
second layer. 

Committee machines are universal approximators. They may 
be classified into two major categories: 
      1. Static structures. In this class of committee machines, 
the responses of several predictors (experts) are combined by 
means of a mechanism that does not involve the input signal, 
hence the designation "static." This category includes the 
ensemble averaging, where the outputs of different predictors 
are linearly combined to produce an overall output. 
      2. Dynamic structures. In this second class of committee 
machines, the input signal is directly involved in actuating the 
mechanism that integrates the outputs of the individual experts 
into an overall output, hence the designation "dynamic."  

Ensemble Averaging 
      Figure 3 shows a number of differently trained neural 
networks (i.e., experts), which share a common input and 
whose individual outputs are somehow combined to produce 
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an overall output. In this research the outputs of the experts 
are scalar-valued. Such a technique is referred to as an 
ensemble averaging method.  The motivation for its use is 
two-fold: 

• If the combination of experts in Fig. 3 were 
replaced by a single neural network, we would have a 
network with a correspondingly large number of 
adjustable parameters. The training time for such a 
large network is likely to be longer than for the case 
of a set of experts trained in parallel. 
• The risk of overfitting the data increases when the 
number of adjustable parameters is large compared to 
cardinality (i.e., size of the set) of the training data. 

 
      In any event, in using a committee machine as depicted in 
Fig. 3, the expectation is that the differently trained experts 
converge to different local minima on the error surface, and 
overall performance is improved by combining the outputs in 
some way. 

  
Fig. 3. Block diagram of a committee machine based on ensemble-averaging. 
 
      In our sample, the 2200 input vectors x are 108 
dimensional with components chromosomes length, 
centromere position, and 106 gray levels. This data is 
delivered to each of the four committee machines as shown in 
the signal flow graph in Figure 3.  
  
 

CLASSIFICATION OF CHROMOSOME DATA 
      For our classification experiments we have used the 
Copenhagen database of annotated measurements from G-
banded chromosomes that have been used in previous 
classification studies (Granlund 1973, 1976; Granum 1980, 
1982; Goren 1989). In data set, the data for an individual 
chromosome consists of up to 106 grey level profile samples 
taken along the medial axis of the chromosome (see Fig. 2). 
This is supplemented with values for each chromosome's 
length and centromere position. It is seen that some profiles 
were sampled backwards, due in part to incorrect centromere 
location and in part to variation in the centromere position of 
meta-centric chromosomes. Manual correction of orientations 
was not applied. 

 
Fig. 4. 108 dimensional input vector with components of 106 gray levels, 
chromosomes length, and centromere position 

Network Training and Testing 
      2200 data in the set is divided into two equal parts. Half 
the data was used for training the network. The other half was 
later used as unseen test data. The roles of the training and test 
data partitions were exchanged in subsequent experiments. 
Classification values for both experiments were then averaged 
to produce a mean classification error rate for training and test 
data for all of the data set.  
      The following four expert training phases were conducted 
to deal with the four different aspects related to the 
chromosomes. 

Expert 1: Training by the gray level profiles of chromosomes 
      The training data set for Expert 1 consists of 1100 data 
gray level profile with 106 components. Shorter chromosomes 
are completed to this size by padding zeroes to the tail. To 
train the neural network, we averaged 50 data vectors in each 
of 22 chromosome types. 
      To classify the test data chromosomes, the Euclidean 
distance to these 22 mean vectors of 22 chromosomes types 
are used. In Figure 5, the mean of the gray level data for type 
5 chromosomes are given as an example. 
 

 
Fig. 5. The mean of the gray level data for type 5 chromosomes 
 
      The Euclidean squared distances of a test chromosome to 
the means of the gray level training data chromosomes are 
computed. The chromosome from which this test data 
extracted is classified as of type to which the distance is 
smallest. In Fig. 6, the test chromosome is classified as a type 
5 chromosome, since its distance to the mean training vector 
of type 5 chromosomes is 300, the smallest.  
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Fig. 6. The Euclidean squared distance of a test chromosome to the mean of 
the gray level training data chromosomes. The distance to type 5 
chromosomes’ mean is 300, the smallest. Therefore the chromosome from 
which this test data is extracted, is classified as of type 5. 
 
      Correct classification rates of this expert are 76.45% in 
training, and 73.36% in testing. The success of this method 
may be improved. 

Expert 2: Fourier transform of the averaged training set 
      The training data set for Expert 2 consists of 1100 data of 
gray level profiles with 106 components. Shorter 
chromosomes are padded to this size by adding zeroes. To 
train the neural network, we averaged 50 data vectors in each 
of 22 chromosome types. And then computed the 106 Fourier 
coefficients for each of the 22 average vectors. 
      To classify the test data chromosomes, the Euclidean 
distance to these 22 Fourier coefficients vectors of 22 
chromosomes types are used. In Figure 7, the Fourier 
coefficients of the gray level data for type 5 chromosomes are 
given as an example. 
 

 
 
Fig. 7. The Fourier coefficients of the mean of the gray level data of type 5 
chromosomes 
 
      Then the Euclidean squared distances of the Fourier 
coefficients of a test chromosome to the Fourier coefficients 
of the means of the gray level training data chromosomes are 
computed. The chromosome from which this test data 
extracted is classified as of type to which the distance is 
smallest. In Fig. 8, the test chromosome is classified as a type 
5 chromosome, since its distance to the Fourier coefficients of 
the mean training vector of type 5 chromosomes is 0.2, the 
smallest.  
 

 
 
Fig. 8. The Euclidean squared distance of the Fourier coefficients of a test 
chromosome to the mean of the Fourier coefficients of the gray level training 
data chromosomes. The distance to the Fourier coefficients of the type 5 
chromosomes Fourier coefficients is 0.2, the smallest. Therefore the 
chromosome, from which this test data is extracted, is classified as of type 5. 
 
Correct classification rates of this expert are 73.68% in 
training, and 70.91% in testing. The success of this method is 
also needs to be improved. 

Expert 3: Neural Fuzzy Model for Chromosome Lengths 
      The training data set for Expert 3 consists of frequency 
distribution matrix of chromosome lengths in each training 
class. There are 22 bins for each chromosome types. 
      Then the mean and variance of each row is calculated, and 
each chromosome types are represented by a Gaussian fuzzy 
membership function. 
 

 
Fig. 9. 22 Gaussian fuzzy membership functions representing 22 types 
 
      To classify a test data chromosome, the length of the test 
chromosome substituted into those 22 fuzzy membership 
functions. The type of  test chromosome is the number of the  
membership function which gives the highest membership 
value to this chromosome. 
      Correct classification rates of this expert are 35.82% in 
testing. The success of this method can be improved. 

Expert 4: Neural Fuzzy Model for Chromosome Centromere 
Positions 
      The training data set for Expert 4 consists of frequency 
distribution matrix of chromosome centromeric positions in 
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each training class. There are 16 bins for each chromosome 
types. 
      Then the mean and variance of each row is calculated as 
done before the chromosome lengths, and each chromosome 
types are represented by a Gaussian fuzzy membership 
function. 
 

 
Fig. 10. 22 Gaussian fuzzy membership functions representing 22 types 
 
     To classify a test data chromosome, the length of the test 
chromosome substituted into those 22 fuzzy membership 
functions. The type of the test chromosome is the number of 
the membership function which gives the highest membership 
value to this chromosome. 
     Correct classification rates of this expert are 31.64% in 
testing. The method is promising but success of this method 
must be improved. 

COMBINATION OF THE INDIVIDUAL RESULTS 
      At that stage we collect the votes of the experts, and 
decide about the identities of the test chromosomes, each of 
which are experts about a certain aspect of the chromosome 
set. 
      Since the last two experts could not contribute much, the 
overall correct classification performance of our classifier 
could not go far beyond of the success level of the first expert 
which is 73.36% in testing. 

RESULTS 
      It is seen that the last two structures we have chosen for 
classification do not help much, the neural fuzzy techniques 
for chromosome classification is rather new and needs to be 
elaborated. 
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