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Abstract—  This paper uses stochastic programming to solve multi-period investment problems. We combine the feature of asset 
return predictability with practically relevant constraints arising in a multi-period investment context. The objective is to 
maximize the expected utility of the returns the periods to balance the liabilities. Asset returns and state variables follow a first-
order vector auto-regression and the associated uncertainty is described by discrete scenario trees. To deal with the long time 
intervals involved in multi-period problems, we consider short-term decisions, and incorporate a solution for the long, subsequent 
steady-state period to account for end effects. 

Keywords—  Portfolio optimization, multi- period asset allocation, stochastic programming, Scenario trees, transaction costs 
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INTRODUCTION 
The classical treatments of strategic asset allocation can be 
traced back to Samuelson (1969) and Merton (1969, 1971). In 
the light of Markowitz’ seminal papers on single-period 
portfolio selection, the early literature focused on conditions 
leading to the optimality of myopic policies, i.e., conditions 
under which portfolio decisions for multi-period problems 
coincide with those for single period problems. In addition, 
the lack of computing power lead to formulate models driven 
by the quest for closed form solutions. To achieve these 
objectives, rather restrictive assumptions were made, and 
many of these models’ results turned out to be inconsistent 
with conventional wisdom as expressed by the so-called 
Samuelson puzzle: whereas one of the main results from early 
multi-period portfolio models is that the fractions of risky 
assets are constant over time, this contradicts the advice 
obtained from many professionals in practice that investors 
should hold a share of risky assets which declines steadily as 
they approach retirement (often called the age effect). Since 
then, many researchers have tried to resolve this puzzle which 
is mainly rooted in some of the (simplifying) assumptions 
used in early models (fixed planning horizon, time-constant 
investment opportunities, no intermediate consumption, etc.). 
      Research in the area of life-cycle asset allocation models 
regained momentum in the early 1990s for two main reasons: 
first, a number of economic factors increased the number of 
people with sizeable wealth to invest (the “generation of 
heirs”), coupled with increased uncertainty about the security 
of public pension systems. Second, the enormous increase in 
computer power enabled the solution of models with more 
realistic assumptions. A number of additional features have 
been added to the classical models, in many cases with the 
goal of resolving the Samuelson puzzle: stochastic labor 
income, time-varying investment opportunities, parameter 
uncertainty (with and without learning), special treatment of 
certain asset classes (real estate), and habit formation, to name 
just the most important developments. 
      In contrast to other approaches in the literature using non-
linear optimization (see, e.g., Blomvall and Lindberg 2002; 
Gondzio and Grothey 2007), we use multi-period stochastic 
linear programming (SLP) to solve the problem of optimal 
life-cycle asset allocation and consumption. This method has 
been explicitly chosen with the practical application of the 
approach in mind. Many features which are considered 
important for investment decisions in practice can be easily 
incorporated when using SLP. For example, personal 
characteristics of the investor can be taken into account (e.g., 
mortality risk, risk attitude, retirement, future cash flows for 
major purchases or associated with other life events). 
Combined with the availability of efficient solvers, this 
explains why the SLP approach has been successfully applied 
to a wide range of problems (see, e.g., Wallace and Ziemba 
2005). To nest classical analytical results from this area within 
our model, we maximize expected utility of consumption over 
the investor’s lifetime and expected utility of bequest rather 

than other objectives which can be implemented more easily 
(e.g., piecewise linear or quadratic penalty functions, or 
minimizing CVaR). 
       The paper is organized as follows: in Sect. 2 we provide a 
classification of the more recent life-cycle asset allocation 
models based on the type of available solutions. Section 3 
describes the stochastic programming model, in particular the 
formulation of the objective, the optimization approach for its 
linearization, and the generation of scenarios. In Sect. 4 results 
from the SLP are compared to those in Campbell et al. (2003), 
and results for an extended setting are presented. Section 5 
concludes. 

OVERVIEW OF SOLUTION METHODS 
      Many papers try to extend the classic Merton framework 
along different lines while maintaining analytical solutions 
(see, e.g., Bodie et al. 1992; Balvers and Mitchell 1997; Kim 
and Omberg 1996; Wachter 2002; Liu 2007). Analytical 
solutions are available for restrictive assumptions on the utility 
structure and the planning horizon. 
      Another set of models obtain solutions which are exact 
only under (generally less stringent) assumptions, and 
approximately correct if these assumptions are not exactly 
met. In some cases, these approximate solutions are available 
in closed form, while others must be solved numerically. 
Approximate analytical solutions are provided by, e.g., 
Campbell and Viceira (1999, 2001, 2002), Campbell et al. 
(2004), and Chacko and Viceira (2005). Approximate 
numerical solutions can be found in, e.g., Schroder and 
Skiadas (1999) and Campbell et al. (2003). 
      To give some examples for the restrictive assumptions 
mentioned above, a number of the models from this category 
assume either a deterministic or an infinite planning horizon. 
Some of the finite-horizon models define utility over terminal 
wealth only. These assumptions are clearly problematic for 
individuals who face an uncertain lifetime and derive their 
utility mainly from what they consume during their lives, and 
not only from their bequest. 
      An important reference for the present paper is Campbell 
et al. (2003). They model asset returns and state variables as a 
first-order vector autoregression VAR(1) and consider 
Epstein–Zin utility with an infinite planning horizon. 
Additional assumptions include the absence of borrowing and 
short-sale constraints. Linearizing the portfolio return, the 
budget constraint, and the Euler equation, they arrive at a 
system of linear-quadratic equations for portfolio weights and 
consumption as functions of state variables. This system of 
equations can be solved analytically, yielding solutions which 
are exact only for a special case (very short time intervals and 
elasticity of intertemporal substitution equal to one), and 
accurate approximations in its neighborhood. 
      In Sect. 4, we replicate their results as far as possible and 
subsequently exemplify the application of the SLP approach 
by investigating aspects beyond the scope of their setting, such 
as constraints on asset weights, transaction costs, and labor 
income.  
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      Two main types of numerical solution methods can be 
found in the literature: One approach works via grid methods 
discretizing the state space, the other is based on Monte Carlo 
simulation. Grid discretizations are used in, among others, 
Brennan et al. (1997), Barberis (2000), Campbell et al. (2001), 
Cocco et al. (2005), and Gomes and Michaelides (2005). The 
main drawback of this approach is that the reduction in the 
state-space dimensionality, which is crucial for the solution in 
terms of computation time, requires to restrict the investment 
opportunity set (usually to one risky and one riskless asset). 
This may be inappropriate for many investors. Detemple et al. 
(2003) and Brandt et al. (2005) use simulation-based 
approaches.Detemple et al. approximate deviations from a 
closed-form solution, while Brandt et al. provide an approach 
that is inspired by the option pricing algorithm by Longstaff 
and Schwartz (2001).  
      The SLP used in the present paper has been applied 
successfully to a number of related problems. To cite only a 
few examples, there are applications in insurance (Cariño and 
Ziemba 1994, 1998; Cariño et al. 1998), and the pension fund 
industry (e.g., Gondzio and Kouwenberg 2001). Zenios (1999) 
surveys large-scale applications of SLP to fixed income 
portfolio management. General aspects of applying such 
models in a strategic asset allocation context are discussed in 
Ziemba and Mulvey (1998)), Pflug and Swietanowski (2000), 
Gondzio and Kouwenberg (2001), Wallace and Ziemba 
(2005), and Geyer and Ziemba (2007). Particular aspects that 
are relevant in a life-cycle portfolio context are discussed in 
Geyer et al. (2007). 

A MULTISTAGE MODEL: ASSET- LIABILITY 
MANAGEMENT 

      The best way to introduce multistage stochastic models is 
a simple asset liability management (ALM) model (Birge, and 
Louveaux 1967). We have an initial wealth 𝑊0, that should be 
properly invested in such a way to meet a liability L at the end 
of the planning horizon H. If possible, we would like to own a 
terminal wealth 𝑊𝐻 larger than L; however, we should 
account properly for risk aversion, since there could be some 
chance to end up with a terminal wealth that is not sufficient 
to pay for the liability, in which case we will have to borrow 
some money. A nonlinear, strictly concave utility function of 
the difference between the terminal wealth 𝑊𝐻, which is a 
random variable, and the liability L would do the job, but this 
would lead to a nonlinear programming model. 

      As an alternative, we may build a piecewise linear utility 
function like the one illustrated in Fig. 1.  

 
Fig. 1 Piecewise linear utility function 

      The utility is zero when the terminal wealth 𝑊𝐻 matches 
the liability exactly. If the slope r penalizing the shortfall is 
larger than q, this function is concave (but not strictly). 
      The portfolio consists of a set of I assets. For simplicity, 
we assume that we may rebalance it only at a discrete set of 
time instants t = 1, ... , H-1, with no transaction cost; the initial 
portfolio is chosen at time t = 0, and the liability must be paid 
at time H. Time period t is the period between time instants t - 
1 and t. In order to represent uncertainty, we may build a tree 
like that in Fig. 1 (Høyland K, Wallace SW 2001, Pflug GC 
2001). Each node 𝑛𝑘 in the tree corresponds to an event, 
where we should make some decision. We have an initial node 
𝑛0 corresponding to time t = 0. 

 

 
 Fig. 2 Scenario tree for a simple asset- liability management problem. 

      Then, for each event node, we have two branches; each 
branch is labeled by a conditional probability of occurrence, 
𝑃(𝑛𝑘|𝑛𝑖), where 𝑛𝑖 = 𝑎(𝑛𝑘) is the immediate predecessor of 
node 𝑛𝑘. Here, we have two nodes at time t = 1 and four at 
time t = 2, where we may rebalance our portfolio on the basis 
of the previous asset returns. Finally, in the eight nodes 
corresponding to t = 3, the leaves of the tree, we just compare 
the terminal wealth with the liability and evaluate the utility 
function. Each node of the tree is associated with the set of 
asset returns during the corresponding time period. A scenario 
consists of an event sequence, i.e., a sequence of nodes in the 
tree, along with the associated asset returns. We have 8 
scenarios in Fig. 2. For instance, scenario 2 consists of the 
node sequence 𝑛3,𝑛4,𝑛5,𝑛6. The probability of each scenario 
depends on the conditional probability of each node on its path 
(Samuelson PA 1969).  
      If each branch at each node is equiprobable, i.e., the 
conditional probabilities are always, each scenario in the 
figure has probability 𝜋𝑠 = 1/8, for s = 1, ... ,8. The branching 
factor may be arbitrary in principle; the more branches we use, 
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the better our ability to model uncertainty; unfortunately, the 
number of nodes grows exponentially with the number of 
stages, as well as the computational effort. 
      At each node in the tree, we must make a set of decisions. 
In practice, we are interested in the decisions that must be 
implemented here and now, i.e., those corresponding to the 
first node of the tree; the other (recourse) decision variables 
are instrumental to the aim of devising a robust plan, but they 
are not implemented in practice, as the multistage model is 
solved on a rolling-horizon basis. This suggests that, in order 
to model the uncertainty as accurately as possible with a. 
limited computational effort, a possible idea is to branch many 
paths from the initial node, and less from the subsequent 
nodes. Each decision at each stage may depend on the 
information gathered so far, but not on the future; this 
requirement is called a. nonanticipativity condition. 
Essentially, this means that decisions made at time t must be 
the same for scenarios that cannot be distinguished at time t. 
To build a model ensuring that the decision process makes 
sense, there are two choices: 
• We can introduce a set of decision variables 𝑥𝑖𝑡𝑠  , 
representing wealth allocated to asset i at time t on scenario s; 
we should force decision variables to take the same value 
when appropriate, by writing explicit nonanticipativity 
constraints for scenarios that cannot be distinguished at time t. 
• We can associate decision variables with nodes in the 
scenario trees and write the model in a. way that relates each 
node to its predecessors. 

A TWO-STAGE, THREE ASSETS MODEL: ASSET- 
LIABILITY MANAGEMENT 

We will illustrate the second alternative in detail, using the 
following numerical data: 

• The initial wealth is 𝑊0 = 50. 
• The target liability is 𝐿𝑠 = 100. 
• There are three assets, say, stocks A and B, and 

bonds; hence, 𝐼 =  3. 
• In the scenario tree of Fig. 2 we have up - and 

downbranches; in the (lucky) upbranches, total return 
is 1.28 for stocks A, 1.40 for stocks B and 1.20 for 
bonds; in the (bad) downbranches, total return is 1.08 
for stocks A,  0.99 for stocks B and 1.12 for bonds 
(Barberis NC 2000). We see that bonds play the role 
of safer assets, and stocks B are very risky assets 
here. We also see that returns are a sequence of  i.i.d. 
random variables, but more realistic scenarios can be 
defined. 

• The reward rate 𝑞 for excess wealth above the target 
liability is 1. 

• The penalty rate 𝑟 for the shortfall below the target 
liability is 4. 

      Let us introduce the following notation: 
• 𝒩 is the set of event nodes; in our case  

𝒩 = {𝑛0,𝑛1,𝑛2, … ,𝑛14} 
• Each node 𝑛 ∈ 𝑁,𝑛 ≠ 𝑛0, apart from the root node 

𝑛0, has a unique direct predecessor node, denoted by 
𝑎(𝑛): for instance, 𝑎(𝑛3)  =  𝑛1. 

• There is a set 𝒮 ⊂ 𝒩 of leaf (terminal) nodes; in our 
case  
𝒮 = {𝑛7,𝑛8,𝑛9, … ,𝑛14}, 

• For each node 𝑠 ∈ 𝒮 we have surplus and shortfall 
variables 𝑤+𝑠 and 𝑤−𝑠, related to the difference 
between terminal wealth and liability. 

• There is a set 𝒯 ⊂ 𝒩 of intermediate nodes, where 
portfolio rebalancing may occur after the initial 
allocation in node no; in our case  
𝒯 = {𝑛1,𝑛2, … ,𝑛6}  

• For each node 𝑛 ∈ 𝒯 ∪ 𝑛0 there is a decision variable 
𝑥𝑖𝑛, expressing the money invested in asset i at node 
n. 

      With this notation, the model may be written as follows: 

max∑ 𝜋𝑠(𝑞𝑤+𝑠 − r𝑤−𝑠  )𝑠∈𝒮     (1) 

Such that 

∑ 𝑥𝑖
𝑛0𝐼

𝑖=1 = 𝑊0     (2) 

∑ 𝑅𝑖𝑛𝑥𝑖
𝑎(𝑛)𝐼

𝑖=1 = ∑ 𝑥𝑖𝑛𝐼
𝑖=1 ,   ∀𝑛 ∈ 𝒯   (3) 

∑ 𝑅𝑖𝑠𝑥𝑖
𝑎(𝑠)𝐼

𝑖=1 = 𝐿𝑠 + 𝑤+𝑠 − 𝑤−𝑠 ,   ∀𝑠 ∈ 𝒮  (4) 

 𝑥𝑖𝑛,𝑤+𝑠 ,𝑤−𝑠 ≥ 0     (5) 

where 𝑅𝑖𝑛 is the total return for asset i during the period that 
leads to node n, and 𝜋𝑠 is the probability of reaching the 
terminal node 𝑠 ∈ 𝒮 ; this probability is the product of all the 
conditional probabilities on the path that leads from root node 
no to leaf node s.  
      Let us choose a nonlinear utility function, such that the 
objective of the optimization problem becomes: 

∑ 𝜋𝑠((𝑤+𝑠)2 − (𝑤−𝑠)2 )𝑠∈𝒮     (7) 

 
Fig. 3 The nonlinear utility function 

      In this case we get a better diversification: 
Table 1. Investment strategy for a simple ALM problem with nonlinear utility 
functions. 

Node  Stocks A Stocks B Bonds 
n0 0 50 0 
n1  0 70 0 
n2  14.34 12.44 22.71 
n3  0 98 0 
n4  37.34 0 31.96 
n5  56.60 0 6.43 
n6  1.86 23.21 28.18 
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ASSET-LIABILITY MANAGEMENT WITH 
TRANSACTION COSTS 

To give the reader an idea of how to build nontrivial financial 
planning models, we generalize a bit the model formulation of 
the previous section, in order to account for proportional 
transaction costs. The assumptions and the limitations behind 
this extended model are the following: 

• We are given a set of initial holdings for each asset; 
this is a more realistic assumption, since we should 
use the model to rebalance the portfolio periodically, 
according to a rolling-horizon strategy. 

• We take proportional (linear) transaction costs into 
account; the transaction cost is a percentage c of the 
traded value, for both buying and selling an asset. 

• We want to maximize the expected utility of the 
terminal wealth.  

• There is a stream of uncertain liabilities that we have 
to meet. 

• We do not consider the possibility of borrowing 
money; we assume that all of the available wealth at 
each rebalancing period is invested in the available 
assets; actually, the possibility of investing in a risk-
free asset is implicit in the model. 

• We do not consider the possibility of investing new 
cash at each rebalancing date (as would be the case, 
e.g.  for a pension fund). 

      Some of the limitations of the model may easily be 
relaxed. The important point we make is that when transaction 
costs are involved, we have to introduce new decision 
variables to express the amount of assets (number of shares, 
not the monetary value) held, sold, and bought at each 
rebalancing date. We use a notation which is similar to that 
used in the previous ALM formulation: 

• 𝒩 is the set of nodes in the tree; 𝑛0 is the root node. 
• The (unique) predecessor of node 𝑛 ∈ 𝒩,𝑛 ≠ 𝑛0, is 

denoted by 𝑎(𝑛); the set of terminal nodes is denoted 
by 𝒮; as in the previous formulation, each of these 
nodes corresponds to a scenario, which is the 
sequence of event nodes along the unique path 
leading from 𝑛0 to  𝑠 ∈ 𝒮, with probability 𝜋𝑠. 

• 𝒯 =  𝒩\({𝑛0} ∪ 𝒮) is the set of intermediate trading 
nodes. 

• 𝐿𝑛 is the liability we have to meet in node 𝑛 ∈ 𝑁; 
liabilities are node dependent and stochastic. 

• 𝑐 is the percentage transaction cost. 
• ℎ�𝑖

𝑛0 is the initial holding for asset 𝑖 =  1, . . . , 𝐼 at the 
root node. 

• 𝑃𝑖𝑛 is the price for asset 𝑖 at node 𝑛. 
• 𝑧𝑖𝑛 is the amount of asset i purchased at node n. 
• 𝑦𝑖𝑛 is the amount of asset i sold at node n. 
• 𝑥𝑖𝑛 is the amount of asset i we hold at node n, after 

rebalancing. 
• 𝑊𝑠 is the wealth at terminal node 𝑠 ∈ 𝒮. 

• 𝑢(𝑊) is the utility for wealth 𝑊; this function is used 
to express utility of terminal wealth. 

      On the basis this notation, we may write the following 
model: 
 max∑ 𝜋𝑠𝑢(𝑊𝑠)𝑠∈𝒮      (8) 
Such that 
 𝑥𝑖
𝑛0 = ℎ�𝑖

𝑛0 + 𝑧𝑖
𝑛0 − 𝑦𝑖

𝑛0 ,   𝑖 =  1, . . . , 𝐼    (9) 

𝑥𝑖𝑛 = 𝑥𝑖
𝑎(𝑛) + 𝑧𝑖𝑛 − 𝑦𝑖𝑛    (10) 

(1 − 𝑐)�𝑃𝑖𝑛
𝐼

𝑖=1

𝑦𝑖𝑛 − (1 + 𝑐)�𝑃𝑖𝑛
𝐼

𝑖=1

𝑧𝑖𝑛 = 𝐿𝑛 ,    

∀𝑛 ∈ 𝒯 ∪ 𝑛0      (11) 

𝑊𝑠 = ∑ 𝑃𝑖𝑠𝐼
𝑖=1 𝑥𝑖

𝑎(𝑠) − 𝐿𝑠, ∀𝑠 ∈ 𝒮   (12) 
𝑥𝑖𝑛,𝑦𝑖𝑛 , 𝑧𝑖𝑛 ,𝑊𝑠 ≥ 0    (13) 
The objective (8) is the expected utility of the terminal wealth; 
if we approximate this nonlinear concave function by a 
piecewise linear concave function, we get an LP problem. 
Equation (9) expresses the initial asset balance, taking the 
current holdings into account; the asset balance at intermediate 
trading dates is taken into account by Eq. (10). Eq. (11) 
ensures that enough cash is generated by selling assets in order 
to meet the liabilities; we may also reinvest the proceeds of 
what we sell in new asset holdings; note how the transaction 
costs are expressed for selling and purchasing. Eq. (12) is used 
to evaluate terminal wealth at leaf nodes; note here that we 
have not taken into account the need to sell assets in order to 
generate the cash required by the last liability; but this would 
make only sense if the whole fund is liquidated at the end of 
the planning horizon. If so, we could rewrite Eq. (12) as  

𝑊𝑠 = (1 − 𝑐)∑ 𝑃𝑖𝑠𝐼
𝑖=1 𝑥𝑖

𝑎(𝑠) − 𝐿𝑠 , ∀𝑠 ∈ 𝒮  (12’) 

In practice, we would repeatedly solve the model on a rolling-
horizon basis, so the exact expression of the objective function 
is a bit debatable. The role of terminal utility is just to ensure 
that we are left in a good position at the end of the planning 
horizon. Let us choose a nonlinear utility function. Then the 
objective of the optimization problem is: 
∑ 𝜋𝑠(𝑊𝑠)2/3
𝑠∈𝒮      (15) 

 

 
Fig. 4 The nonlinear utility function 

 
      In this case we get a better diversification: 
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Table 2. Investment strategy for a simple ALM problem with transaction 
costs, and with nonlinear utility functions. 

Node  Stocks  Bonds 
n0 738.591 0.006 
n1  0.006 375.375 
n2  692.685 0.002 
n3  0.010 371.949 
n4  0.032 351.634 
n5  0.023 324.821 
n6  525.391 47.920 

 

CONCLUSION 
The most important point is that we have assumed that the 
liabilities must be met. This may be a very hard constraint; if 
extreme scenarios are included in the formulation, it may well 
be the case that the model above is infeasible. Therefore, the 
formulation should be relaxed in a sensible way; we could 
consider the possibility of borrowing cash; we could also 
introduce suitable penalties for not meeting the liabilities. 

In principle, we could also require that the probability of not 
meeting the liabilities is small enough; this leads to chance-
constrained formulations, for which we refer the reader to the 
literature (Campbell JY, Viceira LM 2002, Heitsch H, 
Römisch W 2003, Hochreiter R, Pflug GC 2007, Klaassen P 
2002, Liu J 2007, Wallace SW, Ziemba WT (eds) 2005). 
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