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Abstract— This paper introduced a general class of mathematical models, Markov chain models, which are appropriate for 
modeling of phenomena in the physical life, medicine, engineering and social sciences. Application of Markov chains are quite 
common and have become a standard tool of decision making. What matters in predicting the future of the system is its present 
state, and not the path by which the system got to its present state. Two methods are presented that exemplify the flexibility of this 
approach: the regular Markov chain and absorbing Markov chain. The long-term trend in absorbing Markov chains depends on 
the initial state. In addition, changing the initial state can change the final result. This property distinguishes absorbing Markov 
chains from regular Markov chains, where the final result is independent of the initial state.  The problems are formulated by 
using the Wolfram Mathematical Programming System. 
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1. INTRODUCTION 
Many decision makers use a certain type of random process to 
make decisions. The main feature of this type of process is 
that it's "memoryless" of the past. Such a process is called a 
Markov Process, first proposed by the Russian mathematician 
Andrei Andreevich Markov in 1906 [1]. 
 The work on the central limit theorem and the law of large 
numbers [2] by Chebyshev, Lyapunov, and Markov created 
the basis for the modernization of probability theory. 
A stochastic process is a mathematical model that evolves 
over time in a probabilistic manner.  
Since the early studies, there have been many applications of 
Markov processes to the modeling of phenomena in the 
physical life, medicine, engineering and social sciences. Paul 
and Tatyana Ehrenfast investigated a Markov chain model for 
diffusion in a 1907 paper about the same time that Einstein 
and Smoluchowski were using Markov processes to study 
Brownian motion. 
On other hand, some of the areas of investigation in the social 
sciences that have been pursued through the use of Markov 
chains include voting behavior, geographical mobility within 
a country, growth and decline of town, the size of economic 
firms, prediction of enrollments in colleges and universities 
and etc.  
In this paper we study the special kind of stochastic process, 
called a Markov chain.  
According to Hogben L. (1987), a “Markov chain” is a 
random process described by a physical system that at any 
given time (t = 1, 2, 3...) occupies one of a finite number of 
states.  At each time t the system moves from state j to state i 
with probability pij that does not depend on t. The numbers pij 
are called “transition probabilities.” [3]. A notable feature of 
Markov chains is that they are historyless – the next state of 
the system depends only on the current state, not any prior 
states [4]. Andrei Nikolaevich Kolmogorov in his seminal 
work [5] remarked that “Historically, the independence of 
experiments and random variables represents the very 
mathematical concept that has given probability its peculiar 
stamp”. 
 

II REGULAR MARKOV CHAIN 
First of all it was reviewed some of the basic properties of 
regular Markov chains.  
 
DEFINITION: A Markov process is a regular chain if 
some power of the transition matrix has only positive 
entries. 
 
In particular, the Markov process is regular if all entries in the 
transition matrix P = P1 are positive.  A Markov process is a 
regular one if there is some positive integer n, so that the 
process may be in anyone of the possible states n steps after 
starting, regardless of the initial state. The smallest n for 
which this is possible is the smallest positive integer n for 
which Pn has no zero entries. 
If P is the transition matrix of a regular Markov chain, then it 
turns out that the powers of P approach a matrix V, all of 

whose rows are the same. If v denotes the row vector formed 
from any of the rows of V, then it also happens that vP = V.  
 
DEFINITION:  A vector v is a fixed point vector of the matrix P 
if P = V. A Markov chain is said to be in equilibrium if the 
probability distribution at some step is given by a fixed point 
vector of the transition matrix. 
 
As an application model it was considered an example from the 
biomedical research studying the risk of heart attack in mean 
[6]. By studying the male ancestors, sons and grandsons of these 
men, the researcher comes up with the following transition 
matrix. 
 

Thin       Normal      Overweight 
 

Thin                 0.3 0.5 0.2 
Normal     0.2 0.6 0.2 
Overweight            0.1         0.5        0.4 

 
 
The transition matrix P shows the probability of change in 
weight from one generation to the next. For example, if a parent 
is in state 3 (the overweight), what is the probability that a 
grandchild will be in state 2. To find out, we will start with a 
tree diagram, as shown in Fig. 1. The various probabilities come 
from transition matrix P. The arrows point to the outcomes 
“grandchild in state 2”. The probability that a parent in state 3 
will have a grandchild in state 2 is given by sum of the 
probabilities indicated with arrows, or   expressed as   
0.05+0.3+0.2=0.55 
 

 
 

Figure 1: Decision tree 
 

We used pij to represent the probability of changing from state i 
to state j in one generation. This notation can be used to write 
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the probability that a parent in state 3 will have a grandchild 
in state 2: 
 
                        p31*p12+p32*p22+p33*p32 
 
This sum of products of probabilities is nothing more than one 
step in the process of multiplying matrix P by itself.  Thus, 
 

 
Note: The entry in row 3, column 2 in P2 gives the probability 
that a person in state 3 will have a grandchild in state 2;that is, 
that an overweighed person will have normal grandchild. This 
number, 0.55, is the result found through using the tree 
diagram.  
In the same way the matrix P2 gives the probability of changes 
after two generations, the matrix P3=P* P2 gives the 
probability of changes after three generations. 
For matrix P, 

 
 
Matrix P3 gives a probability of 0.555 that a person in state 3 
will have great-grandchild in state 2. Also the probability that 
the person in state 3 will have great-grandchild in state 3 is 
0.256. In order to develop a long-range prediction for the 
proportion of the population in each weight group, we should 
assign the initial distribution of people which can be written 
as probability vectors. If we suppose that the initial 
probability vector is Xo= [0.2   0.5   0.25], the distribution 
after one generations is 
                     
 
 
   
Using this information, we can compute the distribution of 
weight group for two and more generations as illustrated in 
Table 1.  
 
 
 
 
 
 
 
 

Table 1. Distribution of weight group, initial 
probability vector [0.2  0.5  0.25] 

After 
Generation n 

Thin Normal Overweight 

0 0.2 0.55 0.25 
1 0.195 0.555 0.25 
2 0.195 0.555 0.25 

 
But what will happened if the initial probability vector is 
different from [0.2   0.5  0.25] ? If we suppose that [0.65  0.25  
0.1] is used, then the results are given in Table 2. 
 

Table 2. Distribution of weight group, initial 
probability vector [0.65  0.25  0.1] 

After 
Generation n 

Thin Normal Overweight 

0 0.65 0.25 0.1 
1 0.255 0.525 0.22 
2 0.2035 0.525 0.244 
3 0.195 0.555 0.25 
4 0.195 0.555 0.25 

 
The results again are approaching the numbers in the probability 
vector [0.19  0.55  0.25], the same numbers approached with the 
initial probability vector [0.2  0.55  0.25]. In either case, the 
long-range trend is for about 55% of the people to be classified 
as normal weighted. This example suggests that this long-range 
trend does not depend on the initial distribution.  
 

III ABSORBING MARKOV CHAIN 
Not all Markov Chains are regular. In fact, some of the most 
important life science applications of Markov chains do not 
involve transition matrix that are regular. One type is known as 
an absorbing Markov chain. A Markov chain is an absorbing 
chain if it has at least one absorbing state and from every state it 
is possible to reach some absorbing state in a finite number of 
steps. If a state is not an absorbing state, it is called a transient 
state.  We will call a state Si absorbin if pii = 1, pij = 0 for i ≠ j. 
Once in Si you can never leave. The transition matrix P can be 
written as  
 
 
 
 
 
 
 
 
Where I1 represents the 1 x 1 identity matrix, O represents the 
matrix of zeros, R represent the matrix in the lower left and Q 
represent the matrix in the lower right. The fundamental matrix 
for an absorbing Markov chain is defined as matrix F, where 
 

F = (In-Q)-1 

 

P2=        

P3=        

Xo*P= [0.195   0.555    0.25] I1 O 

R Q 
P= 
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Here In is the n x n identity matrix corresponding in size to 
matrix Q, so that the difference In-Q exists. 
 
As an application mode it was considered an example from 
the study by Beck, Robert and Stephen in medical prognoses 
[7]. The study estimates a patient’s prognosis for improving 
under various treatment strategies whereby the researchers 
come up with the following transition matrix. 
 
 
                       well (1)          ill (2)        dead(3) 
 
 
well(1)  0.3 0.5 0.2 
ill(2)  0 0.5 0.5 
dead(3)                 0 0 1 
 
 
 
The transition matrix shows that the probability of going from 
state 1 to state 3 is 0.2, and that the probability of staying in 
state 3, is 1. Thus, once state 3 is entered, it is impossible to 
leave. For this reason, state 3 is called and absorbing state. For 
the long-term trend we should find various powers of the 
transition matrix. Using Wolfram Mathematical Programming 
System we generate the following results: 
 

 
 

 
 
It can be noticed that when P is raised to higher and higher 
powers, the system will tend toward the absorbing state, so 
that the probability is 1 that the patient will eventually die. In 
addition, the long-term trend in absorbing Markov chains 
depends on the initial state. Changing the initial state can 
change the final result. This property distinguishes absorbing 
Markov chains from regular Markov chains, where the final 
result is independent of the initial state. In order to find the 
final probabilities of entering an absorbing state without 
finding all the powers of the transition matrix, it is necessary 
only to work with the non-absorbing states. As we already 
noted above the fundamental matrix is defined as matrix F, 
where  

F = (In-Q)-1 

 

and In is the identity matrix corresponding in size to matrix Q. 

 

 
 
The fundamental matrix (F) gives the expected number of visits 
to each state before absorption occurs. For example, if the 
patient is currently well, the first row just computed says that it 
is expected number of cycles that a well patient will continue to 
be well before dying is 1.428 and the expected number of cycles 
that a well patient will be ill before dying is also 1.428. Finally, 
to verify our answer that the probability is 1 that if the patient 
was originally well will ended up dying we use the product 
matrix FR. The product FR gives the matrix of the probability 
that if the system was originally in a particular non-absorbing 
state; it ended up in the absorbing state.  
 

4. CONCLUSION 
Markov chains are a relatively simple but very interesting and 
useful class of random processes. It is usual to think of Markov 
Chains as describing the trajectories of dynamic objects.  The 
changes are not completely predictable, but rather are governed 
by probability distributions. These probability distributions 
incorporate a simple sort of dependence structure, where the 
conditional distribution of the next state of the system depends 
only on the present state not on preceding states. 
That is, what matters in predicting the future of the system is its 
present state, and not the path by which the system got to its 
present state.  
Application of Markov chains are quite common and have 
become a standard tool of decision making. Two methods are 
presented that exemplify the flexibility of its application: the 
regular Markov chain and absorbing Markov chain.  
The long-term trend in absorbing Markov chains depends on the 
initial state. In addition changing the initial state can change the 
final result. This property distinguishes absorbing Markov 
chains from regular Markov chains, where the final result is 
independent of the initial state.  
 
 
 
 



 

41 

 

5. SELECTED EXTENSIONS 
This classical subject is still very much alive, with important 
developments in recent decades in both theory and 
applications. As interesting extensions I briefly described two 
of them which are of high importance in modeling complex 
system. 
1.So-called adaptive Markov chains. These are systems in 
which the transition matrix is adjusted depending upon the 
entire history of the system or some statistical summary of 
that history.  
2. Non-linear Markov Chain in which the distribution of Xn 
depends upon both Xn-1 and its distribution , ηn-1. This is the 
evaluation of a Feynman-Kac system. Moreover, an excellent 
monograph on Feyman-Kac formulae and their mean field 
approximations has recently been written [8]. 
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