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Abstract 
Ground Moving Target Indicator (GMTI) and High Resolution Radar 
(HRR) can track position and velocity of ground moving target. Pose, 
angle between position and velocity, can be derived from kinematics 
estimates of position and velocity and it is often used to reduce the search 
space of a target identification (ID) and Automatic Target Recognition 
(ATR)  algorithms. Due to low resolution in some radar systems, the 
GMTI estimated pose may exhibit large errors contributing to a faulty 
identification of potential targets. Our goal is to define new methodology 
to improve pose estimate. Besides applications in target tracking, there are 
numerous commercial applications in machine learning, augmented 
reality and body tracking.   
 
 
 

1. INTRODUCTION  

With high-resolution radar sensors such as HRR and SAR 
(Synthetic Aperture Radar), ground targets become visible 
more as a rich set of radar signatures corresponding to the 
target geometrical details than as a single reflector with an 
equivalent RCS (Radar Cross Section). Feature and 
signature aided tracking and ATR applications benefit 
from HRR radar processing. Successful simultaneous 
tracking and identification applications exploit feature 
information to determine the target type and dynamics. 
This has enabled target classification and identification 
(ID), as well as ATR. As a "by-product" of the target 
ID/ATR process, the pose angle estimates are available. 
Pose information consists of a depression angle and an 
aspect angle (Fig. 1). The depression angle is related to the 
sensor position and aspect angle can be determined from 
the HRR profile. For ground targets, which are constrained 
to move on the earth surface, their velocity vector direction 
is aligned most of time along the body's longitudinal axis. 
As a result, the pose angles carry kinematic information 
that can be used to aid target tracking particularly during 
the maneuvering periods. See more in [1],[2],[4],[5] and 
[6]. In this paper we present a methodology for a better 

pose estimate algorithms, which can in turn accomplish 
improved target tracking and identification, as well as 
reduce target miss-association probability (MAP). To 
maximize a search area, airborne systems operate at 
standoff ranges to detect targets and initiate tracks. 
Tracking systems then transition into a track maintenance 
mode after target acquisition; however, closely spaced 
targets such as at road intersections require feature analysis 
to identify the targets. HRR radar affords dynamic 
processing analysis for vehicle tracking and signal features 
(range, angle, aspect, and peak amplitudes) for target 
detection and identification. Pattern recognition algorithms 
applied to ATR problems are typically trained on a group 
of desired objects in a library to gain a statistical 
representation of each objects’ features. In this paper we 
propose to use new statistical  comparison  approach based 
on novel idea of combining several statistical methods 
which uses off line generated template against real HRR 
target signature data. We exploit time, frequency and 
correlation features of the HRR signatures. The algorithm 
then aligns real time signatures to the library templates of 
targets and determines the best correlation value for the 
aligned features. In doing so we propose classic methods 
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of Pearson and Spearman coefficients as well as chi square 
testing. Also, a new methodology via Haar Transform [24] 
and recently introduced statistical method of Brownian 
Distance Correlation [27] are considered as well. Based on 
these methods, various statistics of the outputs are 
compared and cross-correlation among two sets of data 
(stored and real) is calculated. In order to match and 
choose target pose angle, we will employ statistical 
hypothesis testing which will result in improved pose 
estimate. In Part II of this paper, we determine and predict 
performance  of  coupled  target  tracker  and  identifier as 
a function of pose estimate. Target tracking will be 
implemented using multiple Extended Kalman Filters (M-
EKF) or Unscented Kalman Filters (M-UKF) in Cartesian 
coordinates with nonlinear (polar) measurements including 
pose (or just aspect) angle. Each filter handles one target 
type, produces estimates in continuous space kinematics, 
and is associated a probability of being used, which 
determines target probability as well. Pose sensitivity to 
parameter changes will be analyzed also.  

 Besides defense applications, results in this paper can 
be used in Intelligent Vehicle Highways, Intersection 
Traffic Control, Benefits  are (i) improved traffic flow, (ii) 
increased safety and (iii) improved gas mileage. Additional 
applications are in the area of Augmented Reality, Facial 
Features estimation.. and Machine Learning algorithms 
development. 

 
2. TECHNICAL OBJECTIVES SUMMARY 

The overall objective of this paper is to introduce a 
methodology to develop better pose estimation technique, 
improve coupled tracking-identification process, and 
reduce target miss-association.  We will use a case - study 
of well known USA Air Force airborne platform of JSTAR 
[4], [5]. The platform is based on old Boeing 707 aircraft 
that has been fitted with many sophisticated target 
identification and tracking equipment. JSTAR has seen 
deployments in Bosnia to enforce Dayton Peace 
Agreement, and Kosovo, among other places, in mid and 
late 1990s. There is a current JSTAR modernization effort 
under way. 
 
The objectives of this paper are listed below. In Part I of 
this paper, we cover first three objectives, while remaining 
three will be covered in Part II. 
 
1.  Target Signature Profiles. Present new   approach  for  
generating spatial and frequency target data templates 
obtained from raw and digitized HRR (SAR) data. The 
data  can be derived from public Moving and Stationary 
Target Acquisition and Recognition (MSTAR) program 
database. The MSTAR data consists of SAR data (X-band 
l x 1 foot resolution). Once real time target raw signature is 
obtained, it will be discredited and stored in a form as any 
of the template entries, Table 1.  
 
2. Target Signature Statistics. Define effective and  less   
computationally  intensive  ID/ATR  search   and   
registration   process  which  uses  statistical  comparison  
of off line  analyzed HRR template data, step 1 above, and 

HRR target data obtained in real time. The key 
requirement here is that the process is fast and 
computationally simple so it can be done in real time, 
when many 1000s of templates are scanned and compared. 
We propose to use new techniques in spatial and frequency 
domains, as well as some new and classic correlation 
methods, all aimed at identifying weak or strong target 
signature correlations.  
3. Target Hypothesis Testing.  Once various target 
signature statistics are generated in Objective 2 above, we 
proceed and perform a variety of hypothesis testing cases, 
to identify strong and weak correlations between real time 
signature and template signatures stored ahead of any real 
time operation. This is very important step and it results in 
an estimate of the most likely pose angle, based on real 
time vs. template match. Note that the best match would 
correspond to a rough pose angle estimate from Table 1, or 
maybe a narrow range of pose angles. This all leads us to 
Objective 4 bellow. 
 
4. Pose Angle Estimate. Good pose estimate  (depression 
and aspect angles, φ and ϕ) accomplishes  reduction   in   
probability  of  real time target miss -  association, which 
allows for the capability to discern relevant targets and 
reject non-plausible targets. Radar tracking assumes that 
after receiving the energy return from the target, the 
approximate coarse position of the target results. Since a 
finite number of range bins are collected, the center bin is 
assumed to be the position of the target (see Fig. 2 and 3 
bellow). Additionally, the radar data has an associated 
depression and azimuth angle to the target, see Fig. 1 
hence further pose estimate fine tuning will be done with 
the help of the results of Objective 5.  
5.  Target Tracking.  With a rough pose angle estimate 
we  define a bank of parallel target tracking filters, each 
one for a particular target type. The MTI (SAR) radar 
combined with a monopoles radar processing provides the 
measurements of  Range (r), Range rate (dr/dt), Azimuth 
angle (α) and  also Elevation angle (ε), from the aircraft to 
the target (Figure 1). The HRR provides a target range 
profile from which we can deduce the pose estimate, i.e. 
depression and aspect angles. Typically this reduces to just 
aspect angle because the depression angle is kept fixed, as 
it will be assumed throughout the work here. Hence we 
will have two rough pose estimates to work with, and to 
improve on.  
6.  Sensitivity Analysis. Predict the performance (better or 
worse) of target identifier and tracker  due  to  pose   
estimate quality. This step corresponds to calculating 
sensitivity of identification (or, in turn, target miss-
association) and tracking performance with respect to pose 
estimate.  We will calculate  the  sensitivity of  various  
statistical parameters to  probability  of  miss – association 
and identify  less  sensitive  and more  sensitive parameters 
from the steps above. This corresponds to breaking down 
pose sensitivity calculation, into individual calculations of 
statistical parameters and signature profiles.  
 
 

3. TARGET SIGNATURE PROFILES 
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Our methodology consists of six steps (3 in Part I, 3 in Part 
II), for six technical objectives of Section II. We start with:  
STEP 1. Develop target signature profiles  
1.1 Obtain row and digitized data for all template targets 

of interest. We can use public domain MSTAR, or 
other sources. Table 1 shows N targets and M pose 
angles. To each entry we add SFs, AFs, and FFs, all 
ahead of time 

1.2 Get  row  and  digitized  signature for a  real  time   
target. 

       It  is  in  the  same form as any Table 1 entry. We 
assume   
       this is done in real time on JSTAR or similar platform.  

TABLE 1. HRR TEMPLATE PROFILE 

     
Pose 

Target 

Pose 1 Pose 2 .. Pose M 
Features 

/ 
Statistics 

Target 1 Templat
e 

(1,1) 

Templat
e 

(1,2) 

.. Templat
e 

(1,M) 

F/S Set 1 

Target 2 Templat
e 

(2,1) 

Templat
e 

(2,2) 

.. Templat
e 

(2,M) 

F/S Set 2 

….. ….. ….. .. ….. ….. 
Target N Templat

e 
(N,1) 

Templat
e 

(N,2) 

.. Templat
e 

(N,M) 

F/S Set N 

 
The MSTAR data consists of SAR data in X band, l x1 
foot resolution. Images are recorded at 15°and 17° 
depression angles with aspect angle 360°range, at around 
1°spacing in azimuth. The methodology used to convert 
the SAR imagery to HRR is discussed in [15]. While the 
MSTAR data consists of all aspect data, for each 
measurement pose estimate, viewing aspect angles 
considered are -5°<φ< 5°in azimuth and 15°and 17°in 
depression angle. Each HRR image results in 101 HRR  
profiles, which represent approximately a 3°variation in 
azimuth. If we have 50 target types, that is a total of  5,050 
signature profiles, plus additional statistical data (last 
column in Table 1) as described in Section IV. 
 
In Steps 1.1 and 1.2, we form specific Spatial, Amplitude 
and Frequency Signature Feature vectors.  
Spatial Features (SFs) consist of:  
       - Row HRR data (MSTAR or other source), Fig. 2.  
       - Vector of K digitized  raw data, Fig. 3.  Here  K = 16 
for   
         the purposes in this paper. In  real situations, 
digitization  
         is done by a professional  equipment,  and the 
number of     
         points could be  32, 64, 128 or more,  case  specific. 
The  
         number of points is K = 2m , m=1,2,3,… .    

 

                                 Figure 1.  HRR  and MTI Radar Geometry  
          

  
       Figure 2.  Continuous HRR Range Data Over ∆R  
     Stationary Target 1 and 2, and Moving Target 1 
Signatures  

 
        Figure 3.  Digitized Data, Stationary Target 1, Fig. 2  
        Each Vertical Line is one digitized range bin 
Besides Spatial Features, we define several derived signal 
characteristics. These include Amplitude Features (AFs) 
and  Frequency Features (FFs), all localized to the total 
range span ∆R indicated in Fig. 2.  
Amplitude Features (AFs) vector, formed of statistics:   
        -  Highest amplitude (Amax) (or two highest ones) 
             -   Lowest amplitude (Amin)  (or two lowest ones)        
        -  Average signal amplitude (Aav) 
        -  Median amplitude value (Amed) 
        -  Standard deviation (Asd) 
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     plus such indicators as: 
        -  Ratio (Amax/Amin) 
        -  Total  energy (Ae), as the sum of amplitudes 
squared 
        -  Number of discretized peaks and valleys (Ap), (Av) 
                Ap = Number of Low-High-Low cases 
                Av = Number of High-Low-High cases = Ap-1  
Note that in order to be very precise about the AFs, we 
would need more than 16 sampling points, hence we need 
to keep that in mind in our results and discussions here.  
Frequency Features (FFs) vector generated by using: 
 
        -  Haar  Transform  Matrix operating  on  SF vector, 
such  
            as in Equation 5 and Tables 2, 3 and 4 in Section 6. 
 
The Haar transform is very useful in signal processing 
applications where real-time implementation is essential. 
The Haar transform is based on Haar functions which are 
periodic and orthogonal. The Haar functions become 
increasingly localized as their number increases [24], 
which provides  frequency domain in which signature 
energy is concentrated in localized regions. This property 
is very useful in various applications.  
 
The Haar transform matrix is an orthogonal one, hence the 
inverse Haar transform can be derived from:  
                                  HHT = I,  H-1 = HT                                
(1)  
where I is the identity matrix. The 1st order Haar matrix is:  
                      H(1) =  1/√21  times                                          
(2)  

1 1 
1 -1  

The recursive equation for higher order Haar matrices [ ] 
is:  
                     H(k+1) =  1/√2k+1 times                                    
(3)  

H(k)*[I  I] 
2k/2 I(2k)*[I –I] 

 
where “*” is Kronecker product [ ], I(2k) is Identity matrix 
of order 2k, such that  H(2) is 4x4, H(3) is 8x8, and H(4) is 
16x16 matrix, and so on. Take the 8x8 Haar matrix H(3):  
H(3) =  1/√23 times                                                              
(4)  

1 1 1 1 1 1 1 1 
1 1 1 1 -1 -1 -1 -1 
√2 √2 -√2 -√2 0 0 0 0 
0 0 0 0 √2 √2 -√2 -√2 
2 -2 0 0 0 0 0 0 
0 0 2 -2 0 0 0 0 
0 0 0 0 2 -2 0 0 
0 0 0 0 0 0 2 -2 

 
Unlike Fourier transform, Haar transformation invilves 
only real numbers. We propose to use Haar matrix not 
because it is the best choice for frequency transform, but 
because of its simplicity for target signature features.    

     The Haar transform Y(K) of an K-input vector X(K) is:  
           Y(K) = H(m)X(K),  X(K)= HT(m)Y(K)            (5)   

 
where K = 2m. To obtain proper averages, for H(4), first 2 
rows are scaled by 1/√16, next 2 by 1/√8, next 4 by 1/√4, 
and the last 8 by 1/√2. Note that this operation will scale 
orthogonality of  the matrix. We note the following: 
   - The first element in Y is the average (DC) value of X 
   - The second element is a low frequency component of 
the input vector X 
   - The next two components of Y correspond to moderate 
frequencies in input X 
   - The next four elements correspond to moderate-to-high 
frequency components in X, and 
   - The last eight elements correspond to high X 
frequencies. 
 
Note that we did not specify what “low” and “high” 
frequencies are. We just want to indicate relative sizes of 
groups of frequencies which can be calculated as inverses 
of spatial differences.  
All X(K) and Y(K) vectors can be stored into extended 
Target Template for each entry of Table 1. During real 
time operation, as JSTAR plane is scanning an area for 
ground targets, real time X(K) and Y(K) would be 
calculated for any target detected, and compared against 
the stored ones of Table 1, to determine specific target 
presence.  More in Section IV. 

4. TARGET SIGNATURE STATISTICS 

Our aim is to devise effective statistical  correlation 
methods.  
STEP 2. Produce various statistical measures and 
correlations  
2.1 Calculate template standard statistics and correlations 

for  
       SFs,  AFs and  FFs (last column in Table 1) 
       This is all done ahead of any real time operation 
2.2  Calculate  real time target statistics and correlations, 
same   
        type as in Step 2.1. This is done as real target is 
acquired 
2.3  Produce a  variety of cross statistics and compare them  
in  
       real time (all or selected templates vs real time 
signature). 
 
In all the Steps above we treat the template and real time 
data as two sequences of either “independent” or 
“dependent” stochastic processes, on which we perform 
statistical testing as described bellow.  Specifically, in 
Steps 2.1 and 2.2 we form:  
Standard Statistical Features (SSFs) which is equivalent 
to individual components of AF vector. In this 
embodiment, we will use SSFs to perform individual 
hypothesis testing in Section 5, and the full SF, FF and AF 
vectors are used for correlation features, Step 2.3.  
Correlation Features (CFs):   
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      -  Pearson  sample correlation coefficient (p) 
      -  Spearman rank correlation coefficient (ρ) 
      -  Chi square test and P-value  (χ2), (P) 
      -  Skewness measure (s) 
      -  Sample distance  (Brownian) covariance and 
coefficient  
         (V, r),  two new concepts introduced recently in [27]. 
Standard Pearson coefficient recovers a linear relationship 
that may exist among two sets of data sequences, per: 
 
  pXY=[Σ(X(i)-Xa)(Y(i)-Ya)]/[Σ(X(i)-Xa)2 Σ(Y(i)-Ya))2]1/2  
(13) 
 
where the sums are evaluated from 1 to K, and Xa and Ya 
are mean (average) values of X(K) and Y(K) sequences. 
The RXY coefficient ranges from -1 to 1. It has some 
serious limitation as far as capturing non linear and non 
stationary correlations, plus pXY=0 does not imply 
independence in general (only for normal distributions). 
On the positive, the method is simple.   
     Spearman rank correlation tests how relationship 
between two variables can be described using 
a monotonic function (increasing or decreasing). With no 
repeated values, a perfect correlation +/-1 occurs when 
each of the variable is a perfect monotone function of the 
other. Ranking refers to data transformation in 
which numerical values are ranked by their size. The 
Spearman coefficient is Pearson’s for the ranked entries. 
For a K-sample size, K  X(k) row values and Y(K) are 
converted to ranked Xr(K) and Yr(K) and ρ is computed 
from:  
                               ρ =1- 6Σd2(i)/n(n2-1)                        (14) 

 
where d(i) = Xr(i)-Yr(i) is the rank difference, and the sum 
goes from 1 to K. We can also use (13) above with Xr(K) 
and Yr(K) instead of original samples.   
      Chi square test is used to test independency of the two 
sequences. The test returns the value from chi-squared 
distribution for the statistic and the degrees of freedom 
number. In the context of our paper, we will test 
independency of real time (an experiment) and template 
signature entries (hypothesized results).  The test is defined 
as:  
                               χ2=Σ (Ai-Ei)2/Ei                                (15)  
where Ai=actual sample value, and Ei=expected sample 
value, and the sum is from 1 to K. A low value of χ2 is an 
indicator of independence. As can be seen from the 
formula, χ2 is always positive or 0 (only if Ai = Ei for every 
i). Once χ2 is calculated, an appropriate program, (e.q. 
Excel CHITEST) returns the probability P that a value of 
the χ2 statistic at least as high as the value calculated by 
(15) could have happened by chance under the assumption 
of independence. In computing P-value, program uses χ2 
distribution with an appropriate number of degrees of 
freedom, df=K–1. The test is most appropriate when Ei’s 
are not too small (≥5).  
The skewness is based upon the sample formula:  
   s=(1/K) Σ(X(i)-Xa(i))3/[(1/K-1) Σ(X(i)-Xa(i))3/2]        (16)  
with average value Xa(i). Often another formula is used, 
i.e. the adjusted Fisher-Pearson standardized moment 
coefficient: 

 
                                    s1=s(K2)/(K-1)(K-2)                   (17)  
(SKEW in Excel). The variance from a normal distribution 
is:    
                  Var(s1)=6K(K-1)/(K-2)(K+1)(K+3)             (18)  
Skewenss is obviously zero for any symmetric distribution.  
Finally, we want to introduce a newest form of correlation 
[ ], i.e. distance correlation and distance covariance 
(equivalent to Brownian distance covariance and 
coefficient). The key advantage is that zero correlation 
implies independence, plus the coefficient captures non 
stationary and non linear correlations as well. Here is how 
it works. 
For a random sample (X,Y)=[(X(k),Y(k), k=1,…,K] of  K  
i.i.d. (independent identically distributed) vectors (X,Y) 
from the joint distribution of the random vectors X in Rp 
and Y in Rq, compute the Euclidean distance matrices:  
  [a(k,l)] = (ǀX(k)-X(l)ǀp),  [b(k,l)] = (ǀY(k)-Y(l)ǀq)       (19)  
 
and then define:  
A(k,l) = a(k,l) - a(k) - a(l) + a 
 B(k,l) = b(k,l) - b(k) - b(l) + b,  k,l = 1,2,…,K              (20)  
where:  

a(k) = (1/n)Σl a(k,l) 
a(l) = (1/n)Σk a(k,l) 

                          a(k) = (1/n2)ΣkΣl a(k,l)                          (21)    
and the sums go from 1 to K. Then, the non negative 
sample distance covariance is defined as:  
Vn

2
 (X,Y) = (1/n2)ΣkΣlA(k,l)B(k,l) ,  k,l = 1,2,…K        (22)  

and the corresponding sample distance correlation as: 
 
        Rn

2
 (X,Y) = Vn

2
 (X,Y)/[Vn

2
 (X)Vn

2
 (Y)]1/2              (23) 

 
whenever  Vn

2
 (X)Vn

2
 (Y)] > 0, and  Rn

2
 (X,Y) = 0, when 

we have Vn
2
 (X)Vn

2
 (Y)] = 0. Obviously, we have sample 

distance variance as: 
 
  Vn

2
 (X) = Vn

2
 (X,X) = (1/n2) ΣkΣlAkl

2,  k,l = 1,2,…K                        (24)  
Another interesting result in is that:   
               Vn

2
 (X,Y) = ǁfn

XY(t,s) – fn
X(t) fn

Y(s)ǁ2              (25)  
where f’s are corresponding characteristic functions. The 
results in (22) and (23) turn out to be equal to Brownian 
(Wiener Process) distance covariance and correlation 
coefficient. Again consult [27]. These are very useful 
results, and we believe they can be applied successfully in 
ATR/ID environment for hypothesis testing. 

5. TARGET HYPOTHESIS TESTING 

STEP 3.  Execute target signature hypothesis testing.   
3.1 Hypothesis testing for Steps 2.1 and 2.2 
3.2 Hypothesis testing for Step 2.3   
We treat real time signature as “an experiment” and 
template data as “test” signatures to compare against. The 
Null Hypothesis H0 refers to a default “no match” position 
that there is no relationship between two phenomena, i.e. 
they are independent.  The H0 is assumed true until 
evidence indicates an alternative “match” H1 hypothesis.   

http://en.wikipedia.org/wiki/Monotonic
http://en.wikipedia.org/wiki/Data_transformation_(statistics)
http://en.wikipedia.org/wiki/Numerical
http://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
http://en.wikipedia.org/wiki/Ranking
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Statistical hypothesis (see Figure 4) testing is defined as:   
- Compute real time and template statistics and compare to 
produce the value O(Tk) of  some test Tk statistic. This 
could be simple variance comparison, chi square, or any 
other of the methods discussed earlier. Comparison may be 
as simple as a quotient of the two statistics or more 
sophisticated calculation of so called p-value. This is the 
probability, under H0, of sampling a test statistic at least as 
extreme as the observed.  

- Reject the null hypothesis, in favor of the alternative 
hypothesis, if and only if the compared or p-value is less 
than the significance level (selected probability) threshold.  
In general, we will define statistical variable Sij (target “i” 
and pose “j”) as a weighted average of the outputs of all 
the statistical tests, denoted by O(Tk) in Figure 4, i.e. 
                                         n 
                               Sij   = ∑ ak O(Tk)                             (26)                                               
                                         k=1 

where ak is TBD weight determined by experiment or 
extensive Monte Carlo simulation of the observed and 
template signatures. Hence variable Sij determines the 
threshold for the H0 acceptance or rejection. We are 
interested in whether the observed data is significantly 
different from what would be expected if the null 
hypothesis is true. So the main goal is to make a proper 
trade-off between the probability of Type I error, i.e.: 
  
   False Alarm = Declaring H1 when H0 holds               (27) 
 
and Type II error, the probability of: 
 
   Missed Alarm = Declaring (keeping) H0 when H1 holds             (28) 

 
In the case of (27) False Alarm may result in a wrong pose 
angle estimate, which is not desirable. This would 
correspond to a target miss-association possibility. In the 
case of (28) Missed Alarm  would result in missing to 
identify a right pose angle estimate. The best possible pose 
estimate is determined by properly choosing Sij threshold, 
based on several statistical tests listed in Task 2.  
If the null hypothesis is true, then we can evaluate the 
probability of a Type I error and this value represents our 
tolerance for Type I errors, i.e. of rejecting when in fact it 
is true. This probability provides an important design 
criterion for testing. Specifically, the rejection region is 
chosen so that the probability of Type I error is no greater 
than a specified level, for example 1% and 5%. An 
alternative approach is to ask the question: Assuming H0 is 
true, what is p-value of the test statistic. If it is close to 
one, then there is no reason to reject the null hypothesis, 
but if it is small, then there is reason to reject H0. Which 
way to test H0 will be decided by Monte Carlo simulation 
which is outside the scope of this paper. This can be done 
for a specific target class case at hand. 
 

Figure 4. Forming Sij Statistical Threshold 
 
6. TARGET SIGNATURE EXAMPLE 

We use Figures 2 and 3 and form specific signature 
features.  
Spatial Features (SFs). We have the following Tables 2, 
3 and 4, with N=16 discretized signature amplitudes (SFs) 
going from left to right, such as in Fig. 3. 
 
TABLE 2. STATIONARY TARGET 1,  SFs VECTOR  
X1

s(16) 
7 10 12 10 15 8 5 14 8 13 4 7 3 22 7 4 
 
TABLE 3.  MOVING TARGET 1,  SFs VECTOR  
X1

m(16) 
7 10 11 8 12 10 12 13 8 13 11 12 13 17 7 4 
 
TABLE 4.  STATIONARY TARGET 2,  SFs  VECTOR  
X2

s(16) 
3 5 4 7 8 6 3 5 7    5      3 5 8 6 3 2 
 
Amplitude Features (AFs). Based on Tables 2, 3 and 4, 
and earlier defined AF’s, we have three signature results: 
 
TABLE 5. STATIONARY TARGET 1, AFs VECTOR  
A1

s(8) 
Amax Amin Amax/Amin Aav Amed Asd Ap Ae 
22 4 5.5 9.3125 8 4.98 6 14.9 

 
TABLE 6. MOVING TARGET 1, AF VECTOR  A1

m(8) 
Ama

x 
Ami

n 
Amax/Am

in 
Aav Ame

d 

Asd Ap Ae 

17 4 4.25 10.5 11 3.1
4 

5 16.
8 

 
TABLE 7. STATIONARY TARGET 2, AFs  VECTOR  
A2

s(8) 
Amax Amin Amax/Amin Aav Amed Asd Ap Ae 
8 2 4 5 5 1.9 5 8.1 

 
Frequency features (FFs). In our example, n=16, m=4, 
hence we need to calculate 16x16 H(4) Haar matrix which 
can be deduced from (3) and H(3). We have: 
 
H(4) = (1/√24) times                                                       (28) 
 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

http://en.wikipedia.org/wiki/P-value
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From Table 2 (stationary Target 1) we obtain 
corresponding frequency vector Y1

s(16) by way of H(4) 
and: 
 
X1

s(16) = [7,10,12,10,15,8,5,14,8,13,4,7,3,22,7,4]T      (29) 
 
producing: 
                     Y1

s(16) = H(4)X1
s(16) =                           (30) 

[9.3125,0.8125,-0.375,-0.5,-1.25,1.0,2.5,3.5,-1.5,1,3.5,-
4.5,-2.5,-1.5,-9.5,1.5]T 

 
If the Target 1 is moving (Table 3), we obtain the vectors: 
 
 X1

m(16) = [7,10,11,8,12,10,12,13,8,13,11,12,13,17,7,4]T   
31) 
 
and: 
                    Y1

m(16) = H(4)X1
m(16) =                           (32) 

[10.5,-0.125,-1.375,0.375,-0.5,-0.75,-0.5,4.75,-1.5,1.5,1,-
0.5,-2.5,-0.5,-2,1.5]T 

 

Finally, the vectors for the stationary Target 2 (Table 4) 
are: 
 
           X2

s(16) = [3,5,4,7,8,6,3,5,7,5,3,5,8,6,3,2]T         (33) 
and 
                      Y2

s(16) = H(4)X2
s(16) =                           (34) 

     [5,0.125,-0.375,0.125,-0.75,1.5,1,2.25,-1,-1.5,1,-1,1,-
1,1,0.5]T      
Based on the above data we form various statistics 
summarized in the Tables 8 and 9 bellow.  

 
Table 8. Statistics for Step 2.1. and 2.2  

 
Table 9. Statistics for Step 2.3  
Some statistics, at least for this example, are more useful 
than others. That may translate into larger or smaller 
coefficients ak in (26) or we may opt not to use some of the 
statistics at all. Case in point, Table 9 entry for Spearman 
correlation coefficient does not look useful because all 
three numbers are very close to each other. On the other 
hand,  Table 9 shows that Brownian Correlation and Chi 
Square test give good resolution between the targets, i.e. 
indicating which signatures appear to be less dependent on 
each other and less correlated, which would support H0 
hypothesis. As the template is spanned for all targets and 
all pose angles, there will be a strong correlation at one 
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point indicating matching or H1. In our limited size 
example we just wanted to indicate a possible method to 
find the best match between real time signature against an 
entry in template Table 1. As far as specific tests for 
defining H0, we would look for good discrimination in 
offered by ratio of variances, means, energy and skewness 
(Table 8) and Chi Square, Brownian correlation, plus 
Pearson correlation, sample and Brownian covariance 
(Table 9). Each of these would correspond to one specific 
entry in Sij of (26). As stated earlier we would use Monte 
Carlo simulation to determine specific weights ak. For 
example, based on Tables 8 and 9,  it appears as if more 
credence should be given to Chi Square and Brownian 
correlation compared to other methods.  
At the end to summarize the results of this section, based 
on the statistics in Tables 8 and 9, we conclude that for the 
three signatures of Figure 2 both stationary and moving 
Target 1 show less correlation with the stationary Target 2 
than to each other, which is what we would expect. We did 
not elaborate on usefulness of various features (SF, FF and 
AF), the idea was to see if for example AF would be useful 
in hypothesis testing. If so, and tables 8 and 9 indicate that, 
we would benefit from less numbers to deal with in AF 
compared to SF and FF. Next step would be to consider 
large template Table 1 and perform Monte  Carlo 
simulation to determine coefficients ak and  O(Tk) in (26). 
We will leave that for the follow up paper.   
In any case, the outcome of all of the above is a rough 
estimate of the pose angle, based on the best fit between 
real time signature and one of the entries in signature 
template table. This outcome will feed into the next step, 
i.e. Tracking Filter which we will describe in Part II of the 
paper. 
 
7. CONCLUSION 
In this paper we presented a new methodology for 
estimating pose angle of a target with HRR or similarly 
generated signature. We employ a variety of local and cross 
statistics in spatial, frequency and amplitude domains, and 
then compare real time against stored template signatures. 
The net result is either a match (Hypothesis H1) or a miss 
(Hypothesis H0) based on statistics comparison which 
produces the best estimate for the pose angle. 
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