
Southeast Europe Journal of Soft Computing ISSN 2233 – 1859

Available online: http://scjournal.ius.edu.ba

Vol 10, No. 2, September 2021, pp. 28-32

28

MQTT And TCP Socket JavaScript Interface For Hybrid Mobile Applications

1Yusuf Dağlıoğlu, 1*Ulviye Hacizade

1Faculty of Engineering, Halic University, Istanbul, Turkey

*Corresponding Author: ulviyehacizade@halic.edu.tr

Article Info

Article history:

Article received on 29 December 2021

Received in revised form 31 December

2021

Keywords:

MQTT; TCP; Android; Cordova;

JavaScript

ABSTRACT: Today's needs require portable platforms such as mobile and

IoT devices to be used more widely. The mobile platform development

industry has grown rapidly as a result of the requirements of today's needs.

There are various operating systems available on market such as iOS and

Android. Naturally, software companies need to run their applications on

multiple operating systems. Therefore, the software companies need to

develop a new software with the native programming language of each

operating system. Some frameworks like Cordova make possible to

develop hybrid applications which based on web technologies and they are

able to run on multiple operating systems. In some cases, developers may

need to access device resources. In these cases, the developers should

develop custom plugin for the hybrid framework. In this study, a plugin for

Cordova framework has been developed that allows you to interact

between web technologies and MQTT and TCP protocols through the

JavaScript API.

1. INTRODUCTION

Hybrid applications are built on both native language of

operating system and web technologies (HTML, CSS,

JavaScript) [1]. Writing native applications for each

operating system on the market has several

disadvantages. Therefore, many developers choose to

have web-view components for both mobile and

desktop applications. But web technologies have

limitations because of its nature and security reasons.

SOP (Same Origin Policy) is an important example for

security limitations [2]. Also, web technologies

consume more resources than native applications

because web technologies have additional layers (such

as JavaScript engine and HTML renderer) to compile

the web technologies on run-time.

There are many different frameworks like Apache

Cordova [3], Phonegap [4] and ElectronJS (previously

called Atom Shell) [5] which support web-view based

applications. Those frameworks are using widely on

different domains [5]. Those frameworks have many

advantages for developers like bootstrapping new

projects [6] and supporting plugins to access native

API’s of operating system. For example; WebView

without any plugin only supports limited

communication types like WebSockets and HTTP

(AJAX) requests. But the developer may need to access

one of the native API’s of Message Queuing Telemetry

Transport (MQTT) or Transmission Control Protocol

(TCP) sockets. As a solution in this case, in this work, a

plugin has been developed for access MQTT and TCP

from mobile hybrid applications.

MQTT is lossless communication protocol which based

on publish-subscribe model that transports messages

between devices [7]. Subscriptions are related to topics.

Each topic has its own message queue. The

responsibility of queue management and message

http://scjournal.ius.edu.ba/

/ Southeast Europe Journal of Soft Computing Vol. 10 No. 2 September 2021 (28-32)

29

delivery is on the server which called “broker” [7].

There are many broker implementations on the market.

The broker sends the messages to client related to their

subscriptions. Each client can be both subscriber or

publisher.

TCP is the protocol on the “transport layer” [8] of the

internet protocol suite [9]. It is low level protocol, for

that reason its being use widely as communication

protocol between devices.

2. RELATED WORKS

For developers, a push notification service is possible to

use with many different protocols like WebSockets,

XMPP. Each of them has its own advantages and

disadvantages. But particular to MQTT is light-weight,

therefore it is preferred on IoT devices. Carlos Silva [9]

implemented a secure MQTT service to use for

notification system to solve problem for instant pushing

multiple messages. The server side of this

implementation is served using Ubuntu and the

connection between client and this server is secured by

SSL. Both client and message broker which is

Mosquitto, required extra configuration to secure

communication. The client side implemented on iOS

and Android as native applications. As MQTT library

used Eclipse Paho and SwiftMQTT. The performance

test was run both SSL and non-secure connection. On

the results of those tests, the server used 6 times more

CPU and RAM when SSL connection was used.

Tang et al. [10] developed a push notification system

based on MQTT connection. The solution's client side

implemented only on Android. The implementation

tested running both server and clients 24 and 12 hour.

The total network consumption of connection was too

low.

Vitols et al. [11] studied the concerns of cross platform

mobile applications architecture. One of the important

considerations is that third party plugins for Cordova.

Cordova framework is developing fast but most of

plugins are not clear about the compatibility with

Cordova framework. That poses risk and affects the

efficiency of the developers because of compatibility

problems. Kudo et al. [12] studied Cordova plugin

attacks and presents a defense solution for them.

Georgiev et al. [2] studied origin-based access control

in hybrid mobile applications. The study demonstrates

that frameworks does not properly compose the access-

control policies. As various studies prove us that

security policies should be define clearly especially on

hybrid applications.

3. CORDOVA PLUGIN

In this work, Cordova plugin is written to communicate

with TCP and MQTT connections directly from

JavaScript inside any webview component. The

Android part is implemented for this plugin. The

architecture of the plugin is explained in Figure 1.

Figure 1: The architecture of plugin

JavaScript interface is the API which is provided for

WebViews. This part works integrated with the Cordova

plugin infrastructure and triggers the operating systems

native methods. In the native part of extension, a

mapping process is executed. This mapping process,

detects the related TCP socket or MQTT broker

instance. If it finds the related instance, it transfers the

data with it. The connection instance should be passed

on run-time from JavaScript interface. The connection

instances are mapped by a connection-key which is a

random generated number by Cordova plugin. Every

connection-key has a mapped connection instance on

operating system native part. If any unmapped key will

be used, or any connection error will occur, native part

of the Cordova plugin will throw an error. But in this

case, JavaScript error callback function will be triggered

and JSON data which includes error code will be passed

to this callback function. Thus, the caller will be able to

catch the exception from web-view. Therefore, API

calls take both error and success callbacks.

The open source “paho” library has been used to

manage the MQTT connections and Android operating

systems embedded Socket library (“java.net.Socket”

package) has been used to manage the TCP connections.

In this work, sample Android applications are written to

use TCP and MQTT connections using the Cordova

plugin. The first Android application has an graphical

user interface to execute some calls to MQTT Cordova

plugin. The user interface of this application is seen in

Figure 2.

/ Southeast Europe Journal of Soft Computing Vol. 10 No. 2 September 2021 (28-32)

30

Figure 2: User interface of MQTT sample application

Many MQTT operations tested with this application and

results have been examined with multiple Android

emulators. The first emulator is “Nexus 4” which has

4GB RAM, x64 processor and it runs with Android 6.0

(API 23). The second emulator is a custom tablet which

has 8GB RAM, x64 processor and runs Android 7.0

(API 24). The memory results according to operations

are shown in Table 1 and Table 2.

Another application has been written for testing TCP

connections via Cordova plugin. The user interface of

this application is shown in Figure 3.

Figure 3: User interface of TCP sample application

Table 1 Memory result of MQTT operations with

Emulator-1

 Operation

Total amount

of memory

(MB) before

operation

Total

amount of

memory

(MB) after

operation

System idle 51

Subscribe operation using 5

brokers 54 54

Subscribe operation using 10

brokers 57 57

Subscribe operation using 20

brokers 68 68

Subscribe operation using 50

brokers 79 79

Subscribe operation using 100

brokers 91 91

Subscribe 10 topic using 1 broker 55 55

Subscribe 20 topic using 1 broker 55 55

Subscribe 50 topic using 1 broker 55 55

Subscribe 100 topic using 1 broker 56 56

Sending 10 String transfer (each

string is 80 character) 52 52

Sending 20 String transfer (each

string is 80 character) 53 52

Sending 50 String transfer (each

string is 80 character) 55 52

Sending 100 String transfer (each

string is 80 character) 56 52

Sending 10 String transfer (each

string is 300 character) 52 52

Sending 20 String transfer (each

string is 300 character) 53 52

Sending 50 String transfer (each

string is 300 character) 55 52

Sending 100 String transfer (each

string is 300 character) 56 52

Table 2 Memory result of MQTT operations with

 Emulator-2

Operation

Total amount

of memory

(MB) before

operation

Total

amount of

memory

(MB) after

operation

System idle 56

Subscribe operation using 5

brokers
59 59

Subscribe operation using 10

brokers
62 62

Subscribe operation using 20

brokers
73 73

Subscribe operation using 50

brokers
84 84

Subscribe operation using 100

brokers
96 96

Subscribe 10 topic using 1 broker 60 60

Subscribe 20 topic using 1 broker 60 60

Subscribe 50 topic using 1 broker 60 60

/ Southeast Europe Journal of Soft Computing Vol. 10 No. 2 September 2021 (28-32)

31

Subscribe 100 topic using 1 broker 61 61

Sending 10 String transfer (each

string is 80 character)
57 57

Sending 20 String transfer (each

string is 80 character)
58 57

Sending 50 String transfer (each

string is 80 character)
60 57

Sending 100 String transfer (each

string is 80 character)
61 57

Sending 10 String transfer (each

string is 300 character)
57 57

Sending 20 String transfer (each

string is 300 character)
58 57

Sending 50 String transfer (each

string is 300 character)
60 57

Sending 100 String transfer (each

string is 300 character)
61 57

The memory results according to operations are shown

in Table 3 and Table 4.

Table 3 Memory result of TCP operations with

 Emulator-1

 Operation

Total amount

of memory

(MB) before

operation

Total

amount of

memory

(MB) after

operation

System idle 53

Sending 10 integers using 1 socket 54 54

Sending 50 integers using 1 socket 54 54

Sending 100 integers using 1

socket 54 54

Sending 10 string using 1 socket

(each string is 80 character) 54 54

Sending 30 string using 1 socket

(each string is 80 character) 54 54

Sending 70 string using 1 socket

(each string is 80 character) 54 54

Sending 100 string using 1 socket

(each string is 80 character) 54 54

Sending 10 string using 1 socket

(each string is 300 character) 54 54

Sending 30 string using 1 socket

(each string is 300 character) 54 54

Sending 70 string using 1 socket

(each string is 300 character) 54 54

Sending 100 string using 1 socket

(each string is 300 character) 54 54

Sending 50 String transfer (each

string is 80 character) 60 57

Sending 100 String transfer (each

string is 80 character) 61 57

Sending 10 String transfer (each

string is 300 character) 57 57

Sending 20 String transfer (each

string is 300 character) 58 57

Sending 50 String transfer (each

string is 300 character) 60 57

Sending 100 String transfer (each

string is 300 character) 61 57

Table 4 Memory result of TCP operations with

Emulator-2

 Operation

Total

amount of

memory

(MB)

before

operation

Total

amount of

memory

(MB) after

operation

System idle 58

Sending 10 integers using 1 socket 59 59

Sending 50 integers using 1 socket 59 59

Sending 100 integers using 1 socket 59 59

Sending 10 string using 1 socket

(each string is 80 character) 59 59

Sending 30 string using 1 socket

(each string is 80 character) 59 59

Sending 70 string using 1 socket

(each string is 80 character) 59 59

Sending 100 string using 1 socket

(each string is 80 character) 59 59

Sending 10 string using 1 socket

(each string is 300 character) 59 59

Sending 30 string using 1 socket

(each string is 300 character) 59 59

Sending 70 string using 1 socket

(each string is 300 character) 59 59

Sending 100 string using 1 socket

(each string is 300 character) 59 59

Sending 50 String transfer (each

string is 80 character) 65 65

Sending 100 String transfer (each

string is 80 character) 66 66

Sending 10 String transfer (each

string is 300 character) 62 62

Sending 20 String transfer (each

string is 300 character) 63 63

Sending 50 String transfer (each

string is 300 character) 65 65

Sending 100 String transfer (each

string is 300 character) 66 66

4 Conclusion

On mobile platforms, web-view without any plugin only

supports limited communication types like WebSockets and

HTTP (AJAX) requests. But the developer may need to

access one of the native API’s of Message Queuing Telemetry

Transport (MQTT) or Transmission Control Protocol (TCP)

sockets. As a solution in this case, in this work, a plugin has

been developed for access MQTT and TCP from mobile

hybrid applications. The MQTT and TCP sockets are

accessed over the prepared JavaScript API which developed

in this work. This JavaScript interface has been designed

using Cordova framework’s plugin infrastructure. In this

design, data transferred over MQTT and TCP protocols to

remote machines and the exchanged data passes to JavaScript

side. Due to the fact that JavaScript supports limited data

types, native object (such as “Socket”, “Broker”) of Java

cannot be passed to JavaScript side. In this study; compatible

/ Southeast Europe Journal of Soft Computing Vol. 10 No. 2 September 2021 (28-32)

32

interfaces have been prepared so that native objects do not

need to be passed. Also, these interfaces implemented in a

way to catch exceptions. Memory usage has always been a

problem in hybrid applications [N]. Because, on the one hand,

the weight of web technologies negatively affects the

application, on the other hand, plugin infrastructure that

enables programmers to exchange data between JavaScript

and on the native language also effects negatively by

consuming more resources. In this study, during data

exchange over TCP and MQTT protocols, the memory

amount of the Android application has been examined.

Considering the memory usage, the method of

communicating over webview with both TCP and MQTT

protocols does not consume more resources than expected,

when evaluated in line with the performance expectations of

an application using webview. When the amount of memory

usage is examined, it is seen that the MQTT protocol

consumes more memory than TCP communication. This

situation is expected due to the nature of the MQTT protocol.

As a result of the evaluations, there is no obstacles for data

exchange using MQTT and TCP protocols via hybrid

applications over plugin.

RFERENCES

[1] A. Khandeparkar, R. Gupta, B. Sindhya, “An

Introduction to Hybrid Platform Mobile Application

Development,” International Journal of Computer

Applications, vol. 118, no. 15, p.31, 2015.

[2] M. Georgiev, S. Jana, V. Shmatikov, “Breaking and

Fixing Origin-Based Access Control in Hybrid

Web/Mobile Application Frameworks,” Proc. NDDS

Symposium, The University of Texas at Austin, pp. 1-15,

2014.

[3] T. Hayit, A. Ozkan, “Determination of Student Readiness

Level: A Mobile Application Study,” International

Journal of Education Science and Technology, vol.3, no.

3, pp. 160-165, 2017.

[4] S. Kinney, S, “Electron in Action,” 1st edition, Manning

Publications, 2018.
[5] C. Griffith, "Mobile App Development with Ionic," 1st

edition, O'Reilly Media, 2017.
[6] F. Yalçınkaya, H. Aydilek, M. Erten, N. İnanç, "IoT

Based Smart Home Testbed Using MQTT

Communication Protocol," International Journal of

Engineering Research and Development, vol. 12, no. 1,

pp. 317-324, 2020.

[7] D.E. Comer, “Internetworking With TCP/IP Vol I:

Principles, Protocols, and Architecture,” Fourth Edition,

Prentice Hall PTR, 2000.
[8] R. Braden, “Requirements for Internet Hosts -

Communication Layers,” Internet Engineering Task

Force, RFC: 1122, p. 81, 1989.

[9] C. Silva, R. Toasa, H.D. Martinez, J. Veloz, C. Gallardo,

"Secure Push Notification Service Based on MQTT

Protocol for Mobile Platforms," School of Technology

and Management, Polytechnic Institute of Leiria, 2017.

[10] K. Tang, Y. Wang, H. Liu, Y. Sheng, X. Wang, Z. Wei,

"Design and Implementation of Push Notification

System Based on the MQTT Protocol," Proc.

International Conference on Information Science and

Computer Applications (ISCA), pp. 116-119, 2013.

[11] G. Vitols, I. Smits, A. Zacepins, "Issues of Hybrid

Mobile Application Development with PhoneGap: A

Case Study of Insurance Mobile Application," Proc. 11th

International Baltic Conference, TUT Press ,pp. 215-

220, 2014.

[12] N. Kudo, T. Yamauchi, T. H. Austin, "Access Control

Mechanism to Mitigate Cordova PluginAttacks in

Hybrid Applications," Journal of Information

Processing, vol. 26, pp. 396-405, 2018.

