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1. INTRODUCTION 

By the throughput of next-generation sequencing 

technologies, microbial ecologists are able to generate 

millions of 16S rRNA gene sequences in a reasonable time. 

Characterizing the composition of millions of sequences 

from hundreds of samples became very popular. To 

understand the complexity of biodiversity within the large 

microbial datasets, sequences are often clustered into 

meaningful bins commonly known as operational 

tax¬onomic units (OTUs). To study the biodiversity within 

samples and between different samples, OTUs are used 

(Schloss & Westcott, 2011).  

 

Characterization of the biodiversity associated with the 

human body (e.g., Huttenhower et al., 2012) ), oceans  (e.g., 
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ABSTRACT: To analyze complex biodiversity in microbial communities, 16S 

rRNA marker gene sequences are often assigned to operational taxonomic units 

(OTUs). The abundance of methods that have been used to assign 16S rRNA 

marker gene sequences into OTUs brings discussions in wh

Suggestions on having clustering methods should be stable in which generated 

OTU assignments do not change as additional sequences are added to the dataset 

is contradicting some other researches contend that the methods should properly 

present the distances of sequences is more important. We add one more de novo 

clustering algorithm, Rolling Snowball to existing ones including the single 

linkage, complete linkage, average linkage, abundance-

distance-based greedy clustering, and Swarm and the open and closed

methods. We use GreenGenes, RDP, and SILVA 16S rRNA gene databases to 

show the success of the method. The highest accuracy is obtained with SILVA 

library. 
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Gilbert et al., 2011),  and soil (e.g., Shade et al., 2013) 

provide such comparisons to researchers. Aligned sequences 

are clustered into OTUs using a threshold of 97% similarity 

or a distance of 3%, according to a convention emerged 

within the field of microbial ecology. The definition of the 

bins is operational since it can be changed to fit the needs of 

the particular project, and this is one of the advantages of the 

OTU-based approach.  

 

Software such as mothur (Schloss et al., 2009), QIIME 

(Caporaso et al., 2010), and other tools (Sun et al., 2009; 

Edgar, 2010; Edgar, 2013; Cai & Sun, 2011; Mah´e et al., 

2014), use several clustering techniques, and it is important 

to understand how different clustering methods implement 
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this conventional OTU threshold of 97% similarity or a 

distance of 3%. It is also necessary to understand how the 

selected method affects the precision and accuracy of 

assigning sequences to OTUs. Mainly, three approaches 

have been developed to assign sequences to OTUs.  

 

1.1.  Closed-reference Clustering 

Phylotyping (Schloss & Westcott, 2011) or closed-reference 

clustering (Navas-Molina et al., 2013) method compares 

sequences to a curated reference database and clusters them 

into the same OTU that are similar to the same reference 

sequence. (Can, and Gürsoy, 2019a,b,c, Gursoy, and Can, 

2019 ) When the reference does not adequately reflect the 

biodiversity of the community, reference-based clustering 

methods trouble. New sequences that are not in the reference 

database cannot be assigned to any OTU. It is also reported 

that the commonly used hypervariable regions within the 

16S rRNA marker genes do not evolve at the same rate as 

the full-length gene (Schloss, 2010; Kim, Morrison & Yu, 

2011). Hence, a sequence representing a small fragment of 

the gene could be more than 97% similar to many other 

reference sequences. Moreover,  although two sequences 

might be 97% similar to the same reference sequence they 

may only be 94% similar to each other. Constructing OTUs 

with the closed-reference approach is problematic because 

of this as well. 

It is also possible that a sequence may be equally similar to 

two or more reference sequences. An alternative way to 

closed-reference approach is to employ a classifier to assign 

taxonomy to each sequence so that clustering becomes 

possible at the desired level within the Linnean taxonomic 

hierarchy (Schloss & Westcott, 2011). Reference-based 

methods are superior because of their speed, ability to 

compare OTU assignments across studies, potential for 

trivial parallelization, and the hope that as databases 

improve, the OTU assignments will also improve.  

 

1.2.  de novo Clustering 

Distance-based (Schloss & Westcott, 2011) or de novo 

clustering (Navas-Molina et al., 2013) uses the distance 

between sequences rather than a reference database to 

cluster sequences into OTUs. In comparison to the 

efficiency of the closed-reference clustering method, 

computational cost increases quadratically with the number 

of unique sequences in a hierarchical de novo clustering 

method. Furthermore, sequencing errors also cause inflation 

of the number of unique sequences requiring large amounts 

of memory and time for clustering. Using stringent quality 

control measures, error rates can be reduced, then these 

problems can be cured (Kozich et al., 2013).  

 

To approximate the clustering of hierarchical methods, 

heuristics are developed to approximate the clustering of 

hierarchical methods (Sun et al., 2009; Edgar, 2010; Mah´e 

et al., 2014). Distance-based greedy clustering (DGC), and 

abundance-based greedy clustering (AGC) (Edgar, 2010; He 

et al., 2015) are the two related heuristic methods which are 

implemented in USEARCH described recently. These 

greedy methods cluster sequences within a defined 

similarity threshold of an index sequence or create a new 

index sequence. If a sequence is more similar than the 

defined threshold, it is assigned to the closest centroid based 

(i.e., DGC) or the most abundant centroid (i.e., AGC). OTU 

assignments are sensitive to the input order of the sequences 

in de novo approaches (Mah´e et al., 2014; He et al., 2015). 

It is doubtful whether the differences in assignments are 

meaningful or not. The strength of de novo clustering is its 

independence of references for carrying out the clustering 

step. Thus, de novo clustering is popular across the field. 

After clustering, the classification of each sequence can be 

used to obtain a consensus classification for the OTU 

(Schloss & Westcott, 2011).  

 

1.3.  Open-reference Clustering 

Another approach combining the closed-reference and de 

novo approaches (Navas-Molina et al., 2013; Rideout et al., 

2014) is open-reference clustering. It performs closed-

reference clustering followed by de novo clustering for the 

sequences that are not found in the reference database. One 

may expect that this method should have the strengths of 

both closed-reference and de novo clustering but different 

OTU definitions employed by closed-reference and de novo 

clustering implementations pose a possible problem.  

Classifying sequences to a bacterial family or genus and 

then assign those sequences to OTUs within those 

taxonomic groups using the average linkage method 

(Schloss & Westcott, 2011) is an alternative to this 

approach. For example, all sequences classified as 

Porphyromonadaceae would be assigned to OTUs with the 

average linkage method using a 3% distance threshold. 

Those sequences that did not classify to a known family 

would also be clustered using the average linkage method. 

This approach lends itself nicely to parallelization since each 

taxonomic group is seen as being independent and can be 

processed separately, this is an advantage of this technique. 

Such an approach would overcome the difficulty of mixing 

OTU definitions between the closed-reference and de novo 

approaches; Certainly, it will still suffer from the problems 

associated with database quality and classification error.  

 

1.4. Quality of OTU Assignments 

The three broad approaches in the above created many 

options for assigning sequences. It has been difficult to 

objectively assess. The quality of OTU assignments is 

difficult to assess objectively. Some of the assessments are 

focused on the time and memory required (Sun et al., 2009; 

Cai & Sun, 2011; Mah´e et al., 2014; Rideout et al., 2014). 

When judging a clustering method, these are valid 

parameters, but the quality of the OTU assignments is 

something else. Some other quality assessment methods use 

its ability to generate data that parallels classification data 

(White et al., 2010; Sun et al., 2011; Cai & Sun, 2011). 

Since bacterial taxonomy often reflects historical biases 
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amongst bacterial systematicists, hence this approach is 

problematic. It is well known that the rates of evolution 

across lineages are not the same (Wang et al., 2007; Schloss, 

2010).  

Clustering of mock community data to evaluate methods is a 

common approach (Huse et al., 2010; Barriuso, Valverde & 

Mellado, 2011; Bonder et al., 2012; Chen et al., 2013; 

Edgar, 2013; Mah´e et al., 2014; May et al., 2014). All these 

approaches ignore the effects of sequencing errors that tend 

to accumulate with sequencing depth. Therefore they are 

highly idealized communities that lack the phylogenetic 

diversity of real microbial communities (Schloss, Gevers & 

Westcott, 2011; Kozich et al., 2013). Other quality 

assessment techniques measure the quality based on the 

method's ability to generate the same OTUs as generated by 

other methods (Rideout et al., 2014; Schmidt, Rodrigues & 

Mering, 2014b). But it does not solve the fundamental 

question of which method is optimal.  

Sequences that are clustered into the same OTU are 

expected to have similar ecological affiliations (Koeppel & 

Wu, 2013; Preheim et al., 2013; Schmidt, Rodrigues & 

Mering, 2014a). The ecological consistency concept as a 

metric of quality is an interesting approach and is a 

quantitative metric. It is unclear how the metric would be 

objectively validated. Westcott and Schloss (2015) proposed 

a method for evaluation of  OTU assignments using the 

distances between pairs of sequences (Schloss & Westcott, 

2011).  

Stability is defined in a rather recent analysis by He and 

colleagues (2015) as the ability of a method to provide the 

same clustering on a subset of the data as was found in the 

full dataset. They characterized the three general clustering 

approaches by focusing on what they called stability. Their 

concept of stability focused on the precision of the 

assignments. They put the quality of the OTU assignments 

in second place. 

 

2. MATERIALS AND METHODS 

In this research work, we employ a novel taxonomy 

dependent method, where each query sequence is compared 

against reference taxonomy databases in Greengenes, and 

SILVA, and assigned to the organism of the best-matched. 

16S rRNA gene sequences in seven taxonomic classes in 

Greengenes, and SILVA 16S rRNA libraries are used to 

create sample sets to be clustered. From each class at a 

taxonomy level a number of seeds are randomly selected. 

Using Longest Common Subsequence Search method 

(LCS), the similarity of query sequence with the seed 

sequences are calculated. If at least one of the similarities 

with seeds exceeds a certain threshold, the query is assigned 

the cluster of seeds.  

The Longest Common Subsequence Search method helps us 

to avoid long sequences of pair wise or globally aligned 

sequences.  

 

2.1 Longest common subsequence (LCS) search 

To find the level of similarity of two gene sequences  using 

Longest Common Subsequence Search method, assume in 

Figure 1., (a) is a gene reported for a bacteria, and (b) is a 

gene reported for another, or the same bacteria.  

(a) GGCTAACTAGTGTAGAGGTGAAATGATTTAGAT 

TAGGTGGCAA…. 

(b) .......................GTGTAGAGGTGAAATGCGTAGAT  

Figure 1. The longest common subsequence of two genes 

The longest common subsequence of (a) and (b) is  

GTGTAGAGGTGAAATG 

Then we remove this common subsequence from both 

sequences. Then look for next longest common substring. If 

there is no longer one this time the string 

TAGAT 

may be the second longest common subsequence. It is seen 

that ten iterations of this process is optimal. 

Then we add the lengths of these common substrings and 

normalize by dividing this sum, to the length of the shorter 

gene. (Can, and Gürsoy, 2019a). 

 

2.2.  Inclass and interclass similarities 

The average inclass similarities and interclass averages are 

compared through the analysis of data contained in the high 

quality ribosomal RNA databases Greengenes, SILVA, and 

RDP. The number of non-redundant bacterial 16S ribosomal 

RNA (rRNA) gene sequences with around 1,200 base pairs 

is 198.510 for Greengenes. This number is 1.488.662 for 

SILVA, and 1.350.270 for RDP. 

The average in class similarities and interclass averages are 

computed for all taxon levels in the three databases 

Greengenes, SILVA, and RDP. The results are shown in 

Table 1. 

It is seen that there is a significat difference between average 

in class and inter class similarities for all taxon levels. 

Hence this observation shows that longest common 

sequence similarity measure can be used for both annotation 

and clustering of unknown samples [27]. (Can, and  Gürsoy, 

2019c). 

 

2.3. LCS Similarity Measure is Successfully Used for 

Annotation  

Three 16S rRNA libraries are used with  198,510 genes   

Greengenes,  with 801,984 genes, RDP, and with 1,820,420 

genes SILVA are used to show the accuracy, sensitivity, and 

specificity of LCS  clustering technique. 
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Table 1. In Class/ Inter Class similarities for all taxon levels 

 Databases In Class Inter Class 

Phylum Greengenes 17.47 11.80 

SILVA 29.36 10.23 

RDP  21.86 14.28 

Mean 22.90 12.10 

Class Greengenes 22.64 12.13 

SILVA 21.15 9.63 

RDP  26.47 10.85 

Mean 23.42 10.87 

Order Greengenes 26.57 12.43 

SILVA 33.28 17.55 

RDP 29.99 11.61 

Mean 29.95 13.86 

Family Greengenes 32.54 13.20 

SILVA 56.41 11.45 

RDP  42.40 22.90 

Mean 43.78 15.85 

Genus Greengenes 45.55 13.81 

SILVA 31.50 15.58 

RDP  49.60 16.61 

Mean 42.22 15.33 

Species Greengenes 56.02 10.45 

SILVA 24.23 12.31 

Mean 40.13 12.70 

 Overall  30.08 13.45 

 

At each taxonomic level, 50 genes are selected from each of 

20 classes. These 1000 genes are then shuffled. From each 

class five seeds are randomly selected. Then the Longest 

Common Subsequence (LCS) similarities of seeds to a 

sample gene (query) are calculated. If any of five seeds is 

similar to the query gene beyond a threshold, this query is 

put in the same cluster as these seeds. 

Table 2. Accuracy, Sensitivity, and specificity of 

clustering in Greengenes    

% Accuracy Sensitivity specificity 

Phylum 98.76 67.90 98.69 

Class 97.12 95.35 97.07 

Order 97.26 94.96 97.23 

Family 97.06 95.21 96.99 

Genus 97.75 85.30 98.27 

Species 97.00 98.30 96.93 

 

Table 3. Accuracy, Sensitivity, and specificity of 

clustering in RDP 

% Accuracy Sensitivity specificity 

Phylum 94.73 65.30 94.45 

Class 88.49 62.30 87.88 

Order 88.64 76.90 89.25 

Family 74.78 83.30 74.33 

Genus 88.91 83.30 84.33 

 

 

Table 4. Accuracy, Sensitivity, and specificity of 

clustering in SILVA 

% Accuracy Sensitivity specificity 

Phylum 94.73 65.30 94.45 

Class 88.49 62.30 87.88 

Order 88.64 76.90 89.25 

Family 74.78 83.30 74.33 

Genus 88.91 83.30 84.33 

 

Using this technique, 1000 genes are clustered with the  

Accuracy,  Sensitivity, and specificity in Tables 2-4 for all 

taxonomic classes. (Can, and  Gürsoy, 2019). 

 

2. 4. Methods  

After obtaining the 16S rRNA gene reads from the high 

quality ribosomal RNA databases Greengenes, SILVA, and 

RDP, we have selected 10, 25, 50, 100, and 200 genum 

classes from each database. From each class we have 

randomly selected 10, 25, and 50 genes as samples. 

 

2.4.1 Similarity Matrices and Snowball 

The selected samples are shuffled to get gene sets with 100, 

2500, and 5000 elements. These genes are given a number.  

Then 100x100, 2500x2500, and 5000x5000 pair wise LCS 

similarity matrices are calculated. Each row of this nxn 

matrix consists of similarity levels of n bacteria to the 

bacteria of this row. Then we sort the n-1 bacteria according 

to the similarities to this bacterium. We use an optimal 

threshold to truncate these sorted lists of bacteria numbers. 

 

An Example 

From ribosomal RNA database SILVA, 10 genum class, and 

from each class 10 gene sequences are randomly selected.  

 

Table 5. Labels of bacteria from each of ten genum classes 

 Gen                   

1 1 2 7 10 16 21 29 62 63 97 

2 9 36 49 53 68 69 70 71 73 85 

3 4 37 38 44 52 57 74 76 84 98 

4 5 11 31 32 40 42 80 88 90 93 

5 18 28 33 66 75 77 78 79 86 95 

6 13 14 23 24 46 51 56 60 94 100 

7 19 22 25 45 47 82 83 91 92 99 

8 12 27 39 41 58 59 61 65 81 96 

9 3 8 17 30 34 35 43 55 64 87 

10 6 15 20 26 48 50 54 67 72 89 
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Then they are shuffled to get a set of 100 sequences. Then 

100x100 pairwise similarity matrix is calculated. A sample 

10x10 portion of it shown in Table 6.  

Table 6. A sample 10x10 portion of the similarity matrix 

1.00 0.87 0.19 0.11 0.10 0.08 0.59 0.20 0.20 0.70 

0.87 1.00 0.19 0.12 0.10 0.09 0.56 0.22 0.22 0.59 

0.19 0.19 1.00 0.14 0.13 0.08 0.19 0.23 0.22 0.19 

0.11 0.12 0.14 1.00 0.20 0.09 0.12 0.14 0.14 0.11 

0.10 0.10 0.13 0.20 1.00 0.09 0.10 0.11 0.11 0.10 

0.08 0.09 0.08 0.09 0.09 1.00 0.09 0.09 0.10 0.08 

0.59 0.56 0.19 0.12 0.10 0.09 1.00 0.22 0.22 0.55 

0.20 0.22 0.23 0.14 0.11 0.09 0.22 1.00 0.23 0.20 

0.20 0.22 0.22 0.14 0.11 0.10 0.22 0.23 1.00 0.20 

0.70 0.59 0.19 0.11 0.10 0.08 0.55 0.20 0.20 1.00 

 

Then each row is sorted, and truncated according to an 

optimal threshold. When similarities are replaced by the 

numbers of the genes which has this similarity with the 

query genes, we get the close relatives of the query genes as 

seen partly in Table 7.  

 

Table 7. Close relatives of the query genes in the first 

column 

1 63 2 29 21 97 10 16 7 62 

2 1 29 63 97 21 10 7 16 62 

3 30 34        

4 37 57 38 74 98 84 52 44 76 

5 88 93 32 11 40 42 90 31 80 

6 26 15 50   

7 62 29 1 97 2 21 10 63 16 

8 17 

9 71 53 68 73 70 36 69 85 49 

10 1 21 97 63 29 2 16 7 62 

 

Rolling Snowball 

In Table 7. A hundred bacteria is listed with their close 

relatives. To obtain clusters from these lists of close 

relatives, we start by one of the rows. If a row has at least 

one common element with another row, the union of these 

two rows is kept and the two rows are erased from the list. 

For example in Table 7. the rows {1, 2, 7,8, 10} have 

common elements, and rolling snowball collects them 

together in the union  

 

{1,2,7,8,10, 16, 18, 21,29,62,63,97}. 
 

search is continued to other rows that has at least one 

common element with this set, and the rolled rows are 

erased from the list. At the end of this process the clusters 

emerge as in Table 8. 

 

 

 

 

 

Table 8. Clusters emerged after snowball rolling. 

1 2 7 10 16 21 29 62 63 97 10 

9 36 49 53 68 69 70 71 73 85 10 

4 37 38 44 52 57 74 76 84 98 10 

5 11 31 32 40 42 80 88 90 93 10 

33 54 1 

13 14 23 24 46 51 56 60 94 100 10 

82 83 2 

12 27 39 41 58 59 61 65 81 96 10 

3 8 17 30 34 43 55 64 8 

6 15 26 50 6 

 
With another list of singletons 

{18}, {19}, {22}, {23}, {25}, {28}, {33}, {35}, {45}, {47}, {48}, 

{66}, {67}, {72}, {75}, {77}, {78}, {79}, {83}, {85}, {87}, {89} 

, {91}, {92}, {95}, {99} 
If we compare the clusters in Table 8, and the labels in 

Table 5., we get the last column of correct clustering 

numbers. Accuracy, sensitivity, and specificity are 

calculated by the following formulas where 

 

TP True positive 

FP False positive 

TN True negative 

FN False negative 

N Sample size 

M Group size 

 

accuracy = (TP + TN)/N 

sensitivity = TP/M 

speci%icity = TN/(N − M) 

 

For this example accuracy=98%, sensitivity=75%, and 

specificity=99.9%.  The singletons are due to the miss 

clustering. 

 

The above example is repeated ten times.  Accuracy, 

sensitivity, and specificity of re clustering of the sample data 

is successfully done as in the Table 9. 

 
 Table 9. Average accuracy, sensitivity, and specificity of 

snowball rolling 

 

RS TP FP TN FN acc sen spe 

1 10 10 0 90 0 1.0 1.0 1.0 

2 10 10 0 90 0 1.0 1.0 1.0 

3 2 2 0 90 8 0.9 0.2 1.0 

4 10 9 1 89 1 0.9 0.9 0.9 

5 18 10 8 82 0 0.9 1.0 0.9 

6 10 10 0 90 0 1.0 1.0 1.0 

7 10 10 0 90 0 1.0 1.0 1.0 

8 10 10 0 90 0 1.0 1.0 1.0 

9 3 3 0 90 7 0.9 0.3 1.0 

10 5 5 0 90 5 0.9 0.5 1.0 

Average 0.9 0.8 1.0 
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3. SNOWBALL FOR SAMPLES FROM GREEN GENES, 

RDP AND SILVA GENE LIBRARIES  

Greengenes 16S rRNA library contains 198,510 genes, 

while RDP has 801,984 genes, and SILVA 1,820,420 genes. 

In Genus taxonomy level, from several numbers of classes, 

several samples are randomly chosen with varying sample 

sizes. In Table 10., it is shown sampling method, and 

corresponding average accuracy, sensitivity, and 

specificities of snowball rolling technique. 

For the Greengenes 16S rRNA library, that contains 198,510 

genes, in the first experiment, 25 genes are randomly 

selected from 200 genus classes. In the second, 50 genes are 

randomly selected from 50 genus classes, in the third, 40 by 

40, and in the fourth, 20 by 20. Sampling style, LCS 

similarity threshold used, number of clusters correctly 

identified, accuracy, sensitivity, and specificity of Snowball 

clustering is shown in Table 10. 

 

Table 10. Accuracy, Sensitivity, and specificity of Snowball 

clustering in Greengenes   

Samp Simil Cluste Accura Sensitiv specifici 

25x200 0.35 145 0.9964 0.482 0.999 

50x50 0.40 41 0.9896 0.633 0.998 

40x40 0.40 30 0.9881 0.615 0.998 

20x20 0.35 17 0.9033 0.705 0.992 

 
As seen in Table 10, accuracy increases by the class size 

while sensitivity which is the average number of correct 

clustering decreases, but all of them are at acceptable levels.  

 

For the RDP 16S rRNA library, that contains 801,984 genes, 

in the first experiment, 25 genes are randomly selected from 

200 genus classes. In the second, 50 genes are randomly 

selected from 100 genus classes, in the third, 50 by 50, and 

in the fourth, 50 by 20. Sampling style, LCS similarity 

threshold used, number of clusters correctly identified, 

accuracy, sensitivity, and specificity of Snowball clustering 

is shown in Table 11. 

 

Table 11. Accuracy, Sensitivity, and specificity of Snowball 

clustering in RDP    

Sampli Simi Clu Accur Sensitiv specificity 

25x200 0.85 133 0.99 0.22 0.99 

50x100 0.80 75 0.99 0.36 0.99 

50x50 0.70 36 0.99 0.42 0.99 

50x20 0.70 17 0.96 0.36 0.99 

 

As seen in Table 11, accuracy increases by the class size 

while sensitivity which is the average number of correct 

clustering decreases, but all of them are at acceptable levels.  

 

For the SILVA 16S rRNA library, that contains 1,820,420 

genes, in the first experiment, 25 genes are randomly 

selected from 200 genus classes. In the second, 50 genes are 

randomly selected from 100 genus classes, in the third, 50 

by 50, and in the fourth, 10 by 10. Sampling style, LCS 

similarity threshold used, number of clusters correctly 

identified, accuracy, sensitivity, and specificity of Snowball 

clustering is shown in Table 12. 

 

Table 12. Accuracy, Sensitivity, and specificity of Snowball 

clustering in SILVA    

Samplin Simil Clust Accura Sensitiv specific 

25x200 0.40 169 0.9969 0.5168 0.9993 

50x100 0.35 81 0.9940 0.5528 0.9985 

50x50 0.55 49 0.9928 0.6576 0.9996 

10x10 0.30 9 0.9643 0.7000 0.9963 

 

As seen in Table 12, accuracy increases by the class size 

while sensitivity which is the average number of correct 

clustering decreases, but all of them are at acceptable levels.  

 

 

 

4. CONCLUSIONS  

Clustering algorithms will continue to be developed, as the 

throughput of next generation sequencing technologies will 

continue to be improved. Because of timely expansive 

similarity matrix construction,  De novo clustering methods 

are considerably slower and more computationally intensive 

than reference-based methods. But the greedy de novo 

methods are faster than the hierarchical methods. Removing 

sequencing error and chimeras is a detriment to execution 

speed of the de novo methods  (Kozich et al., 2013). As the 

rate of sequencing error increases so do the number of 

unique sequences that must be clustered. The speed of the de 

novo methods requires a four-fold execution time increase 

when doubling the number of sequences which shows that 

the scaling is approximately quadratically. Microbial 

ecologists must continue to refine clustering methods to 

better handle the size of their growing datasets, but they 

must also take steps to improve the quality of the underlying 

data. Ultimately, objective standards must be applied to 

assess the quality of the data and the quality of OTU 

clustering.  

In this research from Genus taxonomy level, from several 

numbers of classes, several samples are randomly chosen 

with varying sample sizes. It is shown that accuracy is 

related to sampling methods. Average accuracy decreases 

with the number of clusters in snowball technique. 
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