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1. INTRODUCTION 

 Bacteria contribute immensely to global energy

and the recycling of matter in almost all environments 

explored. The flora of the human gut has been extensively 

explored for potential associations with the appearance of

many human diseases (Duvallet et. al. 2017; Forbes, et. al. 

2016; Turnbaugh et. al. 2006) [1-3] The collection of 

microbes and their genes that exist within and on the 

the human body, are known as the microbiome. 

microbes have established a symbiotic association over time, 

and changes in this collaboration is linked to 

diseases . The rich microbial diversity of environments such 
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ABSTRACT: For the taxonomic classification of microbes, 16S ribosomal RNA 

(rRNA) gene sequences are widely used in environmental microbiology as 

reliable markers. Although the massive sequencing of 16S rRNA gene amplicons 

encompassing the full length of genes is not easy, because of  the limitations of 

the current sequencing techniques, in databases Greengenes, RDP, and SILVA 

millions of rRNA gene sequences are uploaded. In this research, first a new 

similarity measure LCSS, for full length genes is defined. Then it 

sequences reported for the same bacteria species demonstrate 

average sequence similarity in Greengenes and SILVA databases, while average 

similarity among genes reported for different bacteria species is around 15% 

only. This is 63%, and 20% respectively at genus level for the three data bases 

Greengenes, RDP, and SILVA.  Hence, species, and genus

constitute useful targets for diagnostic assays and other scientific 

In the present research, the built in function LongestCommonSubsequence

used repeatedly in computer algebra package MATHEMATICA to create an in 

silico pipeline for taxonomic classification uploaded new

Conclusions: Our results suggest that LongestCommonSubsequence

can be used for taxonomic classification of unknown bacteria through their full 

16S ribosomal RNA (rRNA) gene sequences.  
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important ecological inferences (Yilmaz, et al. 2016: 

2017) Determining which microbial

and at the ocean beds, how they survive are the

questions in marine microbial ecology. 

 

As a result of these research activities, t

substantial number of microbial community

deposited in sequence archives, as an example,

Nucleotide Archive currently holds over 600,000 

environmental samples (Mitchell et al., 2017)

rate of deposition is climbing. 

For the taxonomic classification of microbes, 16S ribosomal RNA 

(rRNA) gene sequences are widely used in environmental microbiology as 

he massive sequencing of 16S rRNA gene amplicons 

, because of  the limitations of 

, in databases Greengenes, RDP, and SILVA 

In this research, first a new 

similarity measure LCSS, for full length genes is defined. Then it is found that 

demonstrate around 53% 

similarity in Greengenes and SILVA databases, while average 

ria species is around 15% 

%, and 20% respectively at genus level for the three data bases 

Greengenes, RDP, and SILVA.  Hence, species, and genus-specific sequences 

tic assays and other scientific investigations. 

t in function LongestCommonSubsequence is 

in computer algebra package MATHEMATICA to create an in 

uploaded new full-length sequences. 

LongestCommonSubsequence similarity 

of unknown bacteria through their full 

(Yilmaz, et al. 2016: Fierer, 

2017) Determining which microbial taxa are at the surface 

how they survive are the driving 

in marine microbial ecology.  [4-6]. 

As a result of these research activities, there are now a 

microbial community datasets 

, as an example, the European 

Nucleotide Archive currently holds over 600,000 

et al., 2017)[7], and the 

ing. To draw biological 
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information from this large amount of data requires accurate 

and reliable in slico tools and methods. 

 

 

Taxonomic Assignments 

Inference of community composition through taxonomic 

classification has been one of the crucial steps in almost all 

microbiome-based analyses. For more than three decades 

now, the common approach for taxonomic assignment of 

microbial species has been the classification of ribosomal 

RNA (rRNA) sequences. Pace, et. al, (1986)[8] developed 

two approaches. In one approach, suitable for mixed 

populations of limited complexity, less than about ten 

different organisms, they isolated 5S rRNA, sorted out the 

various species-specific molecules by high-resolution gel 

electrophoresis. Individual 5S rRNA types then are 

sequenced and, with reference to existing files of 5S rRNA 

sequences, the phylogenetic affinities of organisms 

contributing the analyzed 5S rRNAs are defined.  

 

In the second approach for mixed populations of unlimited 

complexity, 16S rRNA genes are "shotgun-cloned" using 

DNA purified from natural samples. It does not matter that 

the original DNA was from a mixed population of 

organisms; the rRNA gene clones are selected on an 

individual basis, as isolated recombinant bacteriophage. The 

different types of cloned rRNA genes then are sorted out in 

the laboratory and submitted to limited sequence analysis 

using a technique which provides immediate access to 

regions of the 16S rRNA gene particularly useful for 

phylogenetic evaluations. Again, by comparison of 

sequences with existing reference collections of complete 

and partial rRNA sequences, the phylogenetic affinities of 

the organisms in the original population are established. 

 

Currently, the most widely used tools for this purpose are 

the mothur (Schloss, JG, et. al., 2009) [9] and Quantitative 

Insights Into Microbial Ecology (QIIME) software packages 

(Caporaso,D.,  et., al., 2010) [10]. These correspond to large 

toolsets that are able to process, classify, and perform 

downstream analyses on individual genetic markers like the 

16S rRNA gene, conserved across the prokaryotic domains.  

 

For taxonomic classification, each tool compares a set of 

queried sequences against a defined reference database, such 

as Greengenes (McDonald, S., et. al,, 2016) [11], NCBI 

(Federhen , 2012) [12], RDP (Cole, JR., et. al., 2013) [13], 

or SILVA (Yilmaz, P., et. al., 2014) [14], assigning the most 

likely taxonomic lineages. Ultimately, the success of these 

analyses is not only dependent on the breadth and diversity 

of annotated sequences available in public repositories, but 

also on the accuracy of the classification algorithms used by 

each of the tools. By default, QIIME makes use of the 

UCLUST clustering method (Edgar, RC., 2010) [15] to 

assign biological sequences to a reference database, while 

mothur reimplements the naive Bayesian RDP classifier, 

developed by Wang et al. (Wang Q., et al. , 2007)[16]. 

 

Two other tools, MAPseq (Matias Rodrigues, JR., et. al., 

2017)[17] and QIIME 2 (Nicholas, A., 2018)[18], have 

recently been released, QIIME 2 has officially replaced 

QIIME as of January 2018. QIIME 2 also makes use of a 

naive Bayes classifier (Bokulich NA, 2018) [19], and 

MAPseq is a k-mer search approach that outputs confidence 

estimates at different taxonomic ranks. 

 

Microbiome studies frequently strive to associate microbial 

diversity signatures with a phenotype of interest. However, 

focusing solely on high-level taxonomic ranks, such as 

classes and orders,  can severely underestimate the degree of 

variation observed between sample groups. To circumvent 

this, highly discriminative approaches are needed to be able 

to pinpoint the most significant taxa warranting further 

validation.  

 

For assessing the performance of MAPseq, mothur, QIIME, 

and QIIME 2 with different reference databases, (Almeida 

et. al. 2018) limited their analyses to classification at the 

lineage level instead of operational taxonomic units, as it 

allows a more consistent and easier interpretation of the 

results. Species assignment of every queried sequence would 

be the desired outcome, but as was previously shown (Golob 

JL, 2017)[21], the limited resolution of the 16S rRNA locus 

precludes an accurate classification at this level. 

Furthermore, there is significant inconsistency in species 

nomenclature across all reference databases, for example, 

RDP does not report taxon names below genus. In their 

work, they calculated the degree of recall and precision at 

the genus and family ranks, as in our opinion they provide 

the best compromise between classification accuracy and 

resolution. 

 
Table 1. The level of recall across all software tools, data-bases, 

and sub-regions for taxons family and genus (Almeida, A., et. al  

2018). 

 

     Family Genus 

Software Database Sub-r Recall Recall 

MAPseq Greengenes V3-V4 88.3 58.9 

MAPseq NCBI V3-V4 81.7 51.7 

MAPseq SILVA V3-V4 67.2 46.5 

mothur RDP V3-V4 85.4 50.5 

mothur SILVA V3-V4 82.9 40.8 

QIIME2 Greengenes V3-V4 93.2 69.2 

QIIME2 SILVA V3-V4 93.6 69.0 

QIIME Greengenes V4 59.4 45.1 

QIIME SILVA V4 66.4 57.5 

 

 

 

 

2. MATERIALS AND METHODS 

In this research work, a new similarity between gene 

sequences is introduced. According to this similarity 

measure, it is seen that, average inclass similarities are 
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statistically significantly higher than the interclass averages. 

It is concluded that this similarity measure can be used to 

annotate unknown bacteria at all taxon levels. 

 

2.1. Longest Common Subsequence Search 

The average inclass similarities and interclass averages are 

compared through the analysis of data contained in the high 

quality ribosomal RNA databases Greengenes, SILVA, and 

RDP. The number of non-redundant bacterial 16S ribosomal 

RNA (rRNA) gene sequences with around 1,200 base pairs 

is 198.510 for Greengenes. This number is 1.488.662 for 

SILVA, and 1.350.270 for RDP. 

To find the level of similarity of two gene sequences, 

assume in Figure 1., (a) is a gene reported for a bacteria, and 

(b) is a gene reported for another, or the same bacteria.  

(a) GGCTAACTAGTGTAGAGGTGAAATGATTTAGAT 

TAGGTGGCAA…. 

(b) .......................GTGTAGAGGTGAAATGCGTAGAT  

Figure 1. The longest common subsequence of two genes 

The longest common subsequence of (a) and (b) is  

GTGTAGAGGTGAAATG 

Then we remove this common subsequence from both 

sequences. Then look for next longest common substring. If 

there is no longer one this time the string 

TAGAT 

may be the second longest common subsequence. It is seen 

that ten iterations of this process is optimal. 

Then we add the lengths of these common substrings and 

normalize by dividing this sum, to the length of the shorter 

gene. 

 

2.2. In class and Interclass Similarities 

The average inclass similarities and interclass averages are 

computed for family, genus and species taxon levels in the 

three databases Greengenes, SILVA, and RDP. The results 

are show n Tables 2-3. 

 

Table 1. similarities in class/ Inter Class for family level 

Databases In Class Inter Class 

Greengenes 51.34 19.34

SILVA 46.37 16.87

RDP  58.80 27.64

Mean 52.17 21.28

 

 

 

Table 2. similarities in class/ Inter Class for genus level 

Databases In Class Inter Class 

Greengenes 71.69 17.46 

SILVA 75.84  22.43 

RDP  42.94 21.44 

Mean 63.49 20.44 

 

Table 3. similarities in class/inter class for species level 

Databases In Class Inter Class 

Greengenes 71.69 17.46

SILVA 33.82 13.23

Mean 52.76 15.35

It is seen that there is a significat difference between in 

class/inter class similarities for all levels. This fact gave us 

an ide that the longest common subsequence similarity can 

be used for annotation of unknown bacteria. 

 

3. RESULTS AND DISCUSSION 

When randomly sampled genes are annotated according to 

their in class and interclass genes similarities for the three 

databases at taxon levels family, genus and species (if 

relevant) the annotation accuracies in tables 4-6 are found. 

Table 4. LCSS accuracies for Greengenes 

Levels # levels Accuracy 

Phylum 86 91.86

Class 232 95.96

Order 366 92.35

Family 466 93.60

Genus 1949 84.55 

Species 2389 86.73

 

Table 5. LCSS accuracies for RDP 

Levels # levels Accuracy 

Phylum 51 90.00 

Class 126 84.13 

Subclass 226 80.09 

Order 391 61.08 

Suborder 2041 80.90 

Family 110 63.30 

Genus 354 68.84  

 

Table 6. LCSS accuracies for SILVA 

Levels # levels Accuracy 

Phylum 80 92.5 

Class 424 78.57 

Order 843 73.47 

Family 2117 74.01 

Genus 5317* 90.20 

Species 183284 
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It is seen that the Longest Common Subsequence in class, 

interclass similarities can successfully used in the three 

taxon levels. 
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