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1. INTRODUCTION  

Although some bacteria, produce antibiotics; others live 

symbiotically in the guts of animals including humans

elsewhere in their bodies, or on the roots of certain plants

bacteria are often identified as the causes of human and 

animal diseases. They also help to break down dead organic 

matter; make up the base of the food web in many 

environments. Bacteria are of such immense importance 

because of their extreme flexibility, capacity for

growth and reproduction, and contribution to the processes 

in the body of humans, and other living creatures

Bacteria also contribute immensely to global energy 

conversion and the recycling of matter. Thus, profiling the 

microbial community is one of the most important tasks for 

microbiologists to explore various ecosystems. However, 

our understanding of the kingdom Bacteria remains limited 

because most bacteria cannot be cultured or isolated under 
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ABSTRACT: In 1980s, the face of the microbiology dramatically changed

the rRNA-based phylogenetic classifications, by Carl Woese

three main branches of life. He used the technique not only to explore microbial 

diversity but also as a method for bacterial annotation.

analysis remains a central method in microbiology. Many researchers followed 

this track, using several new generations of Artificial Neural Networks

obtained high accuracies using available datasets of their time. 

number of known bacteria increased enormously. In this article we used ANN's 

to annotate bacterial 16S rRNA gene sequences from 

Greengenes database taxonomy: Proteobacteria, Firmicutes

Actinobacteria, and Chloroflexi. 93% average accuracy

ications. When we used the bundle testing technique, the average accuracy easily 

raised to 100%.  
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laboratory conditions (Ash et. al., 1991)
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Until the development of high

technology, (Audic, and. Claverie, 1997

restriction  fragment length polymorphism

2000), FISH, fluorescent situ hybridization

and Genechips (Bruno, et. al., 2000)

mainstream methods in studies of bacterial communities and 

diversity. Recently, meta-genomic methods provided by 

next-generation sequencing technology such as Roche 454 

(Cannone, et., al., 2002, Christensen, 

(Cole, e., al., 2006) have facilitated a remarkable expansion 

of our knowledge regarding uncultured bacteria

a., 2016). 
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Early Formal Classifications
1
 

In the year 1866, Ernst Haeckel, in the Tree of Life in 

Generelle Morphologie der Organismen  (Haeckel, 1867) 

Bacteria are first classified as plants constituting the class 

Schizomycetes, which along with the Schizophyceae  

formed the phylum Schizophyta. Haeckel placed the group 

in the phylum Moneres in the kingdom Protista and defined 

them as completely structureless and homogeneous 

organisms, consisting only of a piece of plasma.  

Indeed Vibrio, a genus of comma shaped bacteria first 

described in 1854 (Pacini, 1854). The genus Bacterium was 

a taxon described in 1828 by Christian Gottfried Ehrenberg 

(Ehrenberg, 1828). Ehrenberg also described Spirillum, 

spiral shaped bacteria in 1832 (Ehrenberg, 1832), Bacillus, a 

genus of spore-forming rod shaped bacteria in 1835, and 

Spirochaeta, thin spiral shaped bacteria in 1835 (Ehrenberg, 

1835). 

The classification of Cohn (1872) was influential in the 

nineteenth century, and recognized six genera: Micrococcus, 

Bacterium, Bacillus, Vibrio, Spirillum, and Spirochaeta 

(Murray, and Holt, 2005). 

In 1905 Erwin F. Smith accepted 33 valid different names of 

bacterial genera and over 150 invalid names, (Smith 1905) 

and in 1913 Paul Vuillemin (Vuillemin, 1913) in a study 

concluded that all species of the Bacteria should fall into the 

genera Planococcus, Streptococcus, Klebsiella, Merista, 

Planomerista, Neisseria, Sarcina, Planosarcina, Meta 

bacterium, Clostridium, Serratia, Bacterium and Spirillum. 

Ferdinand Cohn (Cohn, 1875 ) recognized 4 tribes: Sphero-

bacteria, Microbacteria, Desmobacteria, and Spirobacteria. 

Stanier, and van Niel, (Stanier, and van Niel, 1941) 

recognized the Kingdom Monera with 2 phyla, Myxophyta 

and Schizomycetae, the latter comprising classes 

Eubacteriae, 3 orders, Myxobacteriae, 1 order, and Spiroch-

etae, 1 order. Bisset (Bisset, K. A. 1962) distinguished 1 

class and 4 orders: Eubacteriales, Actinomycetales, Strept-

omycetales, and Flexibacteriales. Migula, (Migula, 1897),  

which was the most widely accepted system of its time and 

included all then-known species but was based only on 

morphology, contained the 3 basic groups, Coccaceae, 

Bacillaceae, and Spirillaceae but also Trichobacterinae for 

filamentous bacteria; Orla-Jensen (Orla-Jensen, 1909) 

established 2 orders: Cephalotrichinae, 7 families, and 

Peritrichinae, presumably with only 1 family. Bergey 

(Bergey et al 1925) presented a classification which 

generally followed the 1920 Final Report of the SAB, 

Society of American Bacteriologists Committee (Winslow et 

al, 1917), which divided Class Schizomycetes into 4 orders: 

Myxobacteriales, Thiobacteriales, Chlamydobacteriales, and 

                                                
1 https://en.wikipedia.org/wiki/Bacterial_taxonomy 

 

Eubacteriales, with a 5th group being 4 genera considered 

intermediate between bacteria and protozoans: Spirocheta, 

Cristospira, Saprospira, and Treponema. 

Different authors often reclassified the genera due to the 

lack of visible traits to go by, in different ways throughout 

the bacteria classification history. A poor state is resulted as 

summarized by Robert Earle Buchanan in 1915 (Buchanan, 

1916). By then, the whole group continuing to receive 

different ranks and names by different authors. 

Relatively recently, in 1980s, Carl Woese dramatically 

changed the face of the microbiology with his rRNA-based 

phylogenetic classifications. It delineated the three main 

branches of life (Woese, et. al, 1990). Today, rRNA-based 

analysis remains a central method in microbiology, used not 

only to explore microbial diversity but also as a method for 

bacterial annotation. rRNA-based identification methods are 

conceptually easier to interpret than molecular phylogenetic 

analyses and are often preferred when the groups are well 

defined. Phylogenetic methods are mostly clustering 

techniques, while rRNA classification methods, have been 

nearest-neighbor-based classification schemes  (Maidak, et. 

al., 1994; DeSantis, et. al., 2003; Brown, 1999). In the past, this 

was due to the lack of a consistent, higher-level bacterial 

classification structure (taxonomy). Several recent events 

have helped change this situation (Wang, et. al., 2007). 

For phylogenetic analysis, the 16S rRNA gene sequence was 

first used in 1985 (Lane, et. al., 1985). Because it contains 

both highly conserved regions for primer design and 

hypervariable regions to identify phylogenetic character-

istics of microorganisms, the 16S rRNA gene sequence 

became the most widely used marker gene for profiling 

bacterial communities (Tringe, and Hugenholtz, 2008). Full-

length 16S rRNA gene sequences consist of nine 

hypervariable regions that are separated by nine highly 

conserved regions (Baker, et. al., 2003; Wang, and Qian, 

2009). Limited by sequencing technology, the 16S rRNA 

gene sequences used in most studies are partial sequences 

(Yang, et. al, 2016). 

 

2. TAXONOMIES TODAY 

Microbiome sequencing analysis is mainly concerned with 

sequencing DNA from microorganisms living in certain 

environments without cultivating them in laboratory. In a 

typical taxonomy guided approach (Huson, et. al., 2012), 

sequencing reads are first binned into taxonomic units and 

then the microbial composition of samples is analyzed and 

compared in detail. 

The two main technical ingredients of taxonomic analysis 

are the reference taxonomy used and the binning approach 

employed. Binning is usually performed either by aligning 
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reads against reference sequences (Pruesse, et., al., 2012) or 

using k-mer based techniques (Cole, et. al., 2014). 

Taxonomic binning of 16S reads is usually based on one of 

the five taxonomies:  

• Greengenes (McDonald, et. al., 2012)  

• SILVA (yilmaz, et. al., 2014),  

• RDP (Wang, et. al., 2007),  

• NCBI (Federhen, 2012), 

• Open Tree of life Taxonomy (OTT) (Hinchliff, et. al., 

2015). 

 

Taxonomic Classifications 

Each of the five taxonomies that we compare is based on a 

mixture of sources that have been compiled into taxonomies 

in different ways. They differ in both size and resolution as 

in Table 1.  

Table1 Overview of five taxonomic classifications  

Taxonomy Type modes Lowest Latest 

Greengenes Automatic 3,093 Species 2013 

SILVA Manual 12,117 Genus 2017 

RDP Semi 6,128 Genus 2016 

NCBI Manual 1,522,150 Species 2017 

OTT Automatic 2,627,066 Species 2016  
All taxonomies assign ranks to their nodes, the seven main 

ones being domain, phylum, class, order, family, genus and 

species. However, RDP and SILVA only go down to the 

genus level, whereas NCBI and OTT go down to the species 

level and below. The two latter taxonomies also have a 

number of intermediate ranks and contain many 

intermediate nodes.  

Because of the known inconsistencies of microbial 

classifications (Beiko, 2016), the choice of reference 

taxonomy is important. For our purposes we have chosen the 

Greengenes taxonomy. 

 

2.1 Greengenes (GG) 

The Greengenes taxonomy (McDonald, et. al., 2012) is 

dedicated to Bacteria and Archaea. Classification is based 

on automatic de novo tree construction and rank mapping 

from other taxonomy sources (mainly NCBI). Phylogenetic 

tree is constructed from 16S rRNA gene sequences that have 

been obtained from public databases and passed a quality 

filtering. Sequences are aligned by their characters and 

secondary structure and then subjected to tree construction 

with Fast Tree (Price, et. al., 2009). Inner nodes are 

automatically assigned taxonomic ranks from NCBI 

supplemented with previous version of Greengenes 

taxonomy and CyanoDB (Komárek, et. al., 2016). We used 

a taxonomy associated with the Greengenes database as 

released on May 2013. Although Greengenes is still 

included in some metagenomic analyses packages, for 

example QIIME (Caporaso, et. al., 2010), it has not been 

updated for the last five years. 

Table 3. Levels and number of sublevels in Greengenes 

Levels # Sublevels 

Phylum 86 

Class 232 

Order 366 

Family 466 

Genus 1949 

Species 2389 

 

 

3. A BRIEF NOTE ON ANNS  

This brief presentation of artificial neural networks will 

focus on a particular structure of ANNs, multi-layer 

feedforward networks, which is the most popular and 

widely-used network paradigm in many applications 

including forecasting volatilities and prices in markets. For a 

general introductory account of ANNs, readers are referred 

to Wasserman (1989); Hertz et al. (1991); Smith (1993). 

Rumelhart et al. (1986a), (1986b), (1994), (1995); 

Lippmann (1987); Hinton (1992); Hammerstrom (1993); 

Haykin 1999 illustrate the basic ideas in ANNs.  

 

3.1 Recurrent Neural Networks (RNN) 

Financial time series mostly dependent nonlinearly on time 

and hence recurrent neural networks (RNN) are particularly 

useful (Szkoła, et al, 2011; Lipton, 2015). They are 

constructed by taking a feedforward network and adding 

feedback connections from output and/or hidden layers to 

input layers. The standard backpropagation algorithm also 

trains these networks conditional that patterns must always 

be presented in time sequential order. The one difference in 

the structure is that there are extra neurons in the input layer 

that is connected to the hidden layer and/or output layer just 

like the other input neurons. These extra neurons hold the 

contents of one of the layers as it existed when the previous 

pattern was trained. In this way, the network takes into 

account previous knowledge it has about previous inputs. 

These extra neurons are called the context unit and it 

represents the network’s long-term memory (Balkin 1997).  

There are three types of RNNs: Jordan, Elman, and 

Jordan/Elman recurrent networks. A Jordan neural network 

(JNN) has additional neurons in the input layer, which are 

fed back from output layer (Carcanoa, et al, 2011). While an 

Elman neural network (ENN) has additional neurons in the 

input layer, which is fed back from hidden layer (Elman, 

1990). The mixture of the two, Jordan/Elman recurrent 

networks (JENN) has additional neurons in the input layer, 

which is fed back from hidden layer, and output layer 

Demir, and Can, 2018). 
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3.2 Jordan Recurrent Neural Networks (JNN) 

A Jordan neural network (JNN) has several feedback 

connections from the output layer to the input layer. The 

input layer has additional neurons, which are fed back from 

the output layer (Carcanoa, et al, 2011). 

 

Figure 1. JNN with a single hidden layer representing a 

nonlinear regression model  

 

4. MATERIALS AND METHODS 

To train and test RNN's, from the 86 phylum level class of 

the  Greengenes taxonomy, five phylum classes are chosen. 

Table 1. Names of the Phylums chosen, and numbers of 

bacteria in those phylums 

 Name of the Phylum #Bacteria 

1. Proteobacteria 60.827 

2. Firmicutes  55.677 

3. Bacteroidetes  25.811 

4. Actinobacteria  15.711 

5. Chloroflexi 4.682 

 

From each of these phylums, 300 bacteria are chosen 

randomly. 100 for training, 100 for validation and 100 for 

testing. 

 

4.1 Coding Data 

To transform the bacteria data into numerical values a 

coding method is adapted. First we decided about a word 

length 4
k
. First disregarding our computational limitations, 

we have chosen k=2. The number of all possible words of 

length 4
2
=16, which are written by a four letter alphabet 

{A,T,C,G} is 4
16

 = 256
4
 = 4.294.967.296. Data vectors of 

that length are out of the range of our computers. Therefore 

we have chosen k=1. In that case the number of all possible 

words of length 4, which are written by a four letter alphabet 

{A,T,C,G} is 4
4
 = 256 which is reasonable.  

For each bacterium, we prepared an empty grid with 256 

pockets. We start by the first possible four letter word 

AAAA, count the appearances of this word in the sequence 

of the chosen bacteria, and write this number as the first 

component of the 256 dimensional vector. Repeating this 

procedure for all other 255 possible words, the bacteria 

sequence is transformed into a 256 dimensional vector of 

integers. Finally these vectors are divided by the maximum 

ingredient in the corpus to normalize. 

 

1 0 16 2 ... 35 9 23 1 7 

 

Figure 2. 256 dimensional vector of integers representing 

the sequence of a bacterium. 

 

4.2 Training RNN's 

Artificial Neural Networks are the best when they are used 

to distinguish two groups. To distinguish these five bacteria 

phylums, we train 20 neural networks which will distinguish 

bacteria from phylum i, and phylum j; i,j=1,2,3,4,5 i∫j. 

During the training alongside the training error, error on the 

validation set is also plotted. To avoid over learning, 

training is early stopped when error on validation set starts 

getting bigger than the error on the training data. 

 

Figure 3. To avoid over learning, training is early stopped 

when error on validation set (Green) starts getting bigger 

than the error on the training data (red) 

4.3 Aggregating the Decisions of RNN's 

When a bacteria from one of the five phylums is presented 

the twenty recurrent neural networks, assuming the RNN ai,j 

is trained to distinguish the two bacteria one from phylum i, 

and one phylum j; i, j=1,2,3,4,5 i∫j, his vote is interpreted as 

follows: If he votes +1, it means that his vote is in the 

direction that the bacterium is from phylum i, while If he 

votes -1, then his vote is that, the bacterium is from phylum 

j.  

For each bacteria introduced to the committee of RNN's, 

twenty votes are observed. The commonest of these votes is 

the aggregated vote of the committee. 
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The success of RNN's in distinguishing the bacteria phylums 

that they are trained for is seen in Table 4. 

Table 4. Successes of RNNs aij j; i, j=1,2,3,4,5 i∫j trained to 

distinguish bacteria of phylum i, from bacteria of phylum j. 

j a1j a2j a3j a4j a5j aj1 aj2 aj3 aj4 aj5 

1 0 91 94 94 89 0 86 100 99 87 

2 90 0 93 99 89 95 0 91 96 94 

3 96 92 0 92 96 95 90 0 88 92 

4 78 92 100 0 89 92 100 89 0 92 

5 95 96 100 89 0 93 100 76 96 0 

 

When votes are aggregated bacteria of phylum i, are 

correctly classified with the accuracy as in Table 5. 

Table 5. Aggregated votes classifies bacteria of phylum 

classes with accuracies in the below. 

Name of the Phylum Accuracy % 

Proteobacteria 97 

Firmicutes  91 

Bacteroidetes  93 

Actinobacteria  88 

Chloroflexi 96 

 

4.4 Bundle Decision 

When bacteria are collected from nature or from patient 

samples, first DNA and genes responsible from the coding 

of 16S rRNA are isolated. Then these isolates are clustered 

for annotation. Therefore it is natural that we may have 

several bacteria (bundle) are recruited from the same cluster. 

Then the question becomes: this bundle of bacteria are from 

the same class. Which class is it? 

To aggregate the decisions of experts, let us send a bundle of 

nine bacteria from one of the phylums to the classifier. If the 

decision for these nine is like 

B 1 2 3 4 5 6 7 8 9 MC 

D 1 5 3 4 5 5 3 5 5 5 

 

Then we decide that the bundle comes from the phylum of 

class five, since the most common vote is five.  

We can repeat the same aggregation technique several times, 

we aggregate votes again by the "most common vote" 

understanding. Let us repeat the above bundle decision 

seven times; we may get a voting like:  

R 1 2 3 4 5 6 7 MC 

D 4 5 5 4 5 5 1 5 

 

Then we decide that the bundle comes from the phylum of 

class five, since the most common vote is five.  

In our experiment, we have got always 100% accuracy 

almost at all cases. 

 

5. RESULTS 

The coded data for bacteria is a very successful feature set 

for classification of bacteria into Greengenes taxonomy 

phylum classes. We have got the accuracy as in Table 5. At 

the cases where bundle decision is applicable, the success is 

almost 100%. 
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