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Abstract 

Hertzsprung and Russell, created a diagram of then known stars with 

respect to absolute magnitudes or luminosities versus their stellar 

classifications or effective temperatures. This gave a clear clusters of 

star types, namely main sequence stars, from birth to maturity, 

followed by giants, supergiants and white dwarfs. With the rise of 

technology number of stars with known properties had been growing 

exponentially and manual categorization is futile. Using the same 

parameters of HR diagram, this paper analyzes the efficiency of 

unsupervised ML algorithm expectation-maximization clustering on a 

database containing 120 000 stars. 

 

 

 

 

 

 

 

 

 

 

 

 

Maximization 

Hertzsprung and Russell, created a diagram of then known stars with 

absolute magnitudes or luminosities versus their stellar 

a clear clusters of 

star types, namely main sequence stars, from birth to maturity, 

followed by giants, supergiants and white dwarfs. With the rise of 

technology number of stars with known properties had been growing 

is futile. Using the same 

parameters of HR diagram, this paper analyzes the efficiency of 

maximization clustering on a 
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1. INTRODUCTION  

The first systematic classification of stars date back to the 

beginning of 20th century. Hertzsprung and Russell 

created a diagram of then known stars with respect to 

absolute magnitudes or luminosities versus their stellar 

classifications or effective temperatures. It also shows the 

evolution of star’s life, from birth to death. [1] The 

diagram, as it can be seen in Figure 1, showed that all stars 

can be categorized into 4 clusters based on the type of star 

compared to our Sun: 

1. Main sequence contains stars from early stages 

upon formation to near end-of-life-maturity (Sun 

is a part of the main sequence). Approximately 

90% of stars fall within this group. The key 

characteristic of these stars is that they are all 

fusing hydrogen in their cores. 

2. Giants are the mature stars. They not only fuse 

helium but also burn hydrogen in a shell around 

the core. Once they die they become the white 

dwarfs. 

3. Supergiants are stars with the most matter that 

didn’t turn into white dwarfs but continued 

growing after giant stage. These stars explode at 

the end of their lives into supernovas and turn into 

black holes. 

4. White dwarfs are remnants or corpses of the dead 

stars. Their shine comes from the remainder 

energy of the cores of giants. [2] 

Black holes are the ultimate remnants of stars. They are 

not on the graph since they do not emit light. In fact, they 

absorb it. [3] This article, therefore, does not address them.

Colors of stars depend on their chemical composition, 

which depends on the stars formation and stage of life. [2] 

The paper shows how unsupervised machine learning 

algorithm, namely, expectation-maximization clustering 

categorizes stars comparing to the Hertzsprung

diagram. 
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2. DATA 

The data was taken on the 21
st
 of May 2017 from The 

Astronomy Nexus, privately owned and opened for public 

use collection of different astronomical databases. The 

database contained all stars in Hipparcos, Yale Bright Star, 

and Gliese catalogs. [4] 

Hipparcos catalog was a result of European Space Agency 

mission in mid 1990s that recorded data for 4 years. It 

summarizes main astrometric and photometric properties 

of 118 218 stars. [5] 

Yale Bright Star catalog (BSC) is public database stars 

visible to the naked-eye containing basic as

astrophysical data. In addition to the collected numeric 

data, catalog contains information on individual entries, 

such as star names, colors, companions, constellations, 

types, and many other known stats. The catalogue has 

9096 stars. [6] 

Gliese catalog of Nearby Stars focuses on stellar objects 

within 25 parsecs of the sun. It contains details on 3803 

stars with precise quantifiable data and additional detailed 

information, such as color, size, and type. [7]

The table, at that moment had ab

which only radius, distance, stellar classification, 
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magnitude, and luminosity are selected in preprocessing 

(Table 1). [4] 

Number of samples available was 119 615, including our 

Sun. All fields were filled with relevant information, 

except the stellar classification. There are 3 051 stars that 

do not have this information. [4] 

Expectation maximization algorithm works even when 

there is data missing, [8] therefore these stars were not 

remove from the database. 

Table 1: Database example 

ra dec dist mag abs m spect lum 

0 0 0 -26.7 4.850 G2V 1.00 

0.0001 1.1 2.1978 9.10 2.390 F5 9.6383 

0.0003 -19.5 479.62 9.27 5.866 K3V 0.3923 

0.0003 38.9 4.4248 6.61 -1.619 B9 3.8690 

0.0006 -51.9 1.3422 8.06 2.421 F0V 9.3669 

 

3. CLUSTERRING USING EXPECTATION- 

MAXIMIZATION ALGORITHM  

The main aim of this research is to find out if unsupervised 

learning algorithm can sort through new incoming stellar 

data reliably, quickly, and efficiently. Expectation-

maximization (EM) algorithm is an iterative method that 

clusters the entries of the fed database based on probability 

of entry belonging to a cluster. It is particularly efficient 

with latent or hidden variable problems. Algorithm is 

effective in dealing with unknown or imperceptible 

connections as well as missing data problems. [8] 

It is typically used for exponential families. However, it 

has proven to be the best clustering model, for organizing 

large amounts of data with no precise parameter 

limitations that separates different categories. EM 

maximizes probability of known data by iteratively 

improving coefficients of the expected known and 

unknown values. [8] 

Expectation step (E) takes a training set of m examples 

{x
(1)

, … , x
(m)

} that is estimated and fit into the parameters 

of a model p(x, z). Variable z represents all the unknown 

dimensions of the data. In our case, stellar classification of 

the 3k examples. Statistically, the likelihood of the output 

is: 

 ���� = ∑ log 
��; ��
���  

 ���� = � log ∑ �� �, �; ��

���

 

The next step is maximizing (M) the likelihood l(θ). Since 

the dataset of this research doesn’t have many features, 

this step doesn’t take a lot of time. However, for larger sets 

maximizing the likelihood takes away the most resources. 

This step cannot be separated from E step since it is 

iteratively constructing a lower-bound on l (E-step), 

followed by optimization of that lower-bound (M-step).  

The method is reiterated until convergence. [8] 

Thus, the EM algorithm is: 

Repeat until convergence: { 

E step: ����
���� ≔ 
�����|����; 	�� 

M step: � ≔ ���max! ∑ ∑ ����
�����"� #�$�%�,��%�;!�

&%��
�%����%�� },  

where Q is some distribution over z’s. [8] 

 

4. IMPLEMENTATION 

The EM algorithm was realized using the Weka software. 

Weka 3.8 is a data mining software in Java created at the 

University of Waikato. It is open source product issued 

under GNU, General Public License. [9]  

The program described expectation-maximization as a 

simple probability distribution for instances belonging to 

each cluster. Clusters are determined either by cross-

validation or specified apriori. [9] 

The issue of missing numeric values was solved by global 

replacement, assigning them mean and mode values from 

the training data. Non-numeric data are assigned null. [9] 

There are several parameters that can be determined prior 

to the execution. They are preset for maximum efficiency 

in most executions. Those values are: 

1. Debug (default F) – additional cluster 

information 

2. Display model in old format (default F) – old 

format is better for higher number of clusters 

3. Do not check capabilities (default F) – reduces 

run time, but can interfere with cluster 

determination 

4. Maximum iterations (default 100) 

5. Maximum number of clusters (default -1) – best 

left to the algorithm to determine 
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6. Minimum log likelihood improvement CV 

(default 10
-6

) – cross-validation probability 

improvement needed to increase number of 

clusters 

7. Minimum log likelihood improvement iterating 

(default 10-6) – minimum improvement essential 

to complete another iteration of EM steps 

8. Minimum standard deviation (default 10
-6

) – 

minimum allowable 

9. Number of clusters (default -1) – must be equal 

or less than maximum 

10. Number of execution slots (default 1) – set to the 

number of CPU cores available 

11. Number of folds (default 10) – used for cross-

validating to find best number of clusters 

12. Number of K means runs (default 10) 

13. Seed (default 100) – randomly used seed number 

[9] 

 

5. RESULTS AND DISCUSSION 

The table below shows the resulting clusters, numerically 

and percentage-wise, as well as comparative theoretical 

HR stats.  

 

Table 2: Tested stars’ categories, comparatively in 

numbers and percentages for statistical theoretical data, 

and Expectation-Maximization results 

Type 
HR [10] 

Expectation-

Maximization 

# % # % 

Main Sequence 107652 90 60597 51 

Giants 478 0.4 3949 3 

Super Giants 35 0.0003 10215 9 

White Dwarfs 10765 9 44853 37 

Total 118930 99.4 119614 100 

 

As it is evident, there is a large difference between 

clustering that was unsupervised and theoretical model 

used in practice. Stars in their infancy have also been 

categorized as dwarfs. Stars that are a part of the main 

sequence nearing the end of life appear to be Giants and 

Supergiants. This might appear to be correct if only 

magnitude and radius of stars was observed. However, 

other parameters are used to select between those features 

to help improve accuracy and near the effectiveness of HR 

model. 

Table 3: Statistics of the EM performance 

 EM algorithm 

Number of samples 119 614 

Time taken 794.75 s 

Log likelihood -37.5952 

Iterations 1 

 

The algorithm is fast in respect to the number of items 

processed and it took only 1 iteration to reach the 

efficiency of 10-6 for the cluster sets. However, as it can be 

seen on figure 3, it has failed to reach HR standards. 

 Figure 2: Lum/mag vs. stellar type graph [9] 

Since the Hertzsprung and Russell created a diagram of 

then known stars and the clear pattern of categories 

showing stars’ size, age, color, and temperature has 

emerged, the nomenclature and categorization of stars in 

official astronomical circles has heavily relied upon it. 

Throughout the century many attempted variations on the 

topic, but the majority has fallen back to their work as 

astronomical observational standard. With advancement of 

the technology and exponential increase in statistics of the 

stellar objects, nearby and in the deep space, the HR 

diagram received only higher accuracy. [1]  

In recent years, there were several attempts to use machine 

learning algorithms, both supervised and unsupervised, to 

achieve same or better results. [11, 12, 13] In Data Mining 

and Machine Learning in Astronomy, authors conclude 

that ML is useful only for solving specific problems, rather 

than being applied to broad sets of objects. [11]Same 

authors demonstrated the claim in the article Robust 

Machine Learning Applied to Astronomical Data Sets. I. 

Star-Galaxy Classification of the Sloan Digital Sky Survey 

DR3 Using Decision Trees – where they analyzed 143 

unique photometric objects to have 15% of them 

misclassified using the decision trees. [12] 
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S. Jing, W. DeSheng, and L. GuangRui in the article An 

Efficient Guide Stars Classification Algorithm via Support 

Vector Machines, demonstrated that even supervised 

algorithm has fallen behind the existing model despite 

showing a supreme performance comparing to then 

existing ML algorithms. [13] 

Consequently, the fact that EM has failed to reach HR 

statistical accuracy and efficiency is not unforeseen.  

 

6. CONCLUSION 

Expectation-Maximization is theoretically a good fit for 

this problem: it can efficiently process large quantity of 

data and maximize statistical probability of an entry 

belonging to a cluster, even when not all data is available. 

It has recognized that there are 4 clusters that stellar 

objects belong to. However, it has not shown to be 

adequate since it mistakenly categorized majority of the 

data into wrong clusters.  

The aim of the study was to show that unsupervised 

algorithms can precisely fit data into select groups. Despite 

recognizing the 4 groups efficiently, EM has failed to 

precisely sort the data.  

 

1. FUTURE STEPS 

Nevertheless, further studies must be conducted before any 

strong conclusion can be made. The fact that algorithm 

determined that 4 clusters are the best solution to the 

stellar classification is promising.  

Before anything else, running the same algorithm on larger 

set with more features might give better results within the 

current frames. Furthermore, adjusting the algorithm 

parameters to non-default values, that is, tweaking the 

algorithm on that set, whilst providing more computing 

resources, appears to be the right way forward.  

Another way to go is to consider chemical compositions of 

stars, since they indicate type, color, radius, mass, and age 

among many characteristics. This can be achieved using 

not only above catalogues but more concurrent stellar 

datasets. 

These cases, however, are not considered for the purposes 

of this paper. The article focuses on analyzing the 

effectiveness of unsupervised machine learning algorithm 

on a database containing information that was available 

over 100 years ago. The results, even though they are not 

equal to manually obtained clusters, do show some of the 

same characteristics and therefore encourage further 

investigations into the topic. 
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