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gained through the sales transaction database which consist of 
purchasing behavior of customers can be found with ARM [4]. 

Association rules have been used in many areas, such as: 
Market Basket Analysis: MBA is one of the most typical 

application areas of ARM. When a customer buys any 
product, what other products s/he puts in the basket with some 
probability may be determined by applying association rules. 

This new knowledge can be exploited by store manager to 
organize the shelves accordingly. Thus, customers can reach 
these products more easily. This, in turn, results with an 
increase in sales rates. 

Medical diagnosis: Association rules can be used for 
helping doctors to treat patients. Serban et al. propose a 
technique based on relational association rules aiming to 
determine the probability ofa certain illness [5]. 

Protein Sequences Proteins are sequences consist of 20 
different amino acids. Each protein is made up of a unique 3-
dimensional structure with amino-acid sequence. Gupta et al. 
find associations between different amino acids in a protein 
[6]. 

Census Data: Censuses make a wide range of general 
statistical information on society. Public services such as 
health, education, transport and public business can take 
advantage of the information related to population and 
economic census for planning [7]. 

Malerba et al. suggest a method for finding spatial 
association rules involving relations among objects in census 
data [7]. 

Customer Relationship Management (CRM) of Credit 
Card Business: CRM helps to develop the relationship 
between credit card customers and the bank with identifying 
the preference of various products, services and customer 
groups according to their choices. Chen et al. classified 
customers into groups to determine high-profit or so called 
gold customers [8]. 

2.1 Basic Measures 

The two important basic measures of association rules are 
support and confidence. 

Support defines how often a rule is applicable to a given 
data set. The rule X ⇒Y holds with support s if s% of 
transactions in D consists of X ∪Y. 

	 ܵ ൌ
ሺܺߪ ∪ ܻሻ

݂݋	# .ݏ݊ܽݎݐ
	 (1) 

In table 1, a simple case with five instances is used to 
demonstrate how the support of a certain X=>Y rule can be 
calculated. 

Confidence identifies how frequently items in Y found in 
transactions that consist of X. The rule X⇒Y holds with 
confidence probability of c given that c% of the transactions in 
D that consist of X also contain Y. 

 

	 ܥ ൌ
ሺܺߪ ∪ ܻሻ
ሺܺሻߪ

	 (2) 

In table 2, a simple case with five instances is used to 
demonstrate how the confidence of a certain X=>Y rule can be 
calculated. 

 

TABLE 1: EXAMPLE OF SUPPORT MEASURE 

TID Items 

Given X⇒Y 

Confidence{X⇒Y}=Occurrence {Y} 

/ Occurrence {X} 

1 Bread, Butter, Peanut 

C{Bread⇒Butter}=2/3=%66 

C{Butter⇒Peanut}=3/4=%75 

C{Bread,Butter⇒Peanut}=1/2=%50 

2 Bread,Butter, Milk 

3 Butter,Peanut 

4 Bread,Peanut 

5 Butter,Peanut,Milk 

TABLE 2: EXAMPLE OF CONFIDENCE MEASURE 

TID Items 
Support{X⇒Y}=Occurrence /Total 
Support 

1 Bread, Butter, Peanut 

Total Support=5 
Support{Bread,Butter}=2/5=%40 
Support{Butter,Peanut}=3/5=%60 
Support{Bread,Butter,Peanut}=1/5=%20 

2 Bread,Butter, Milk 

3 Butter,Peanut 

4 Bread,Peanut 

5 Butter,Peanut,Milk 

 

3. LITERATURE OVERVIEW 

This section presents a literature review on different 
techniques for ARM with a special attention on MBA 
applications. 

ARM algorithms can be classified into three main classes: 
(1) Frequent itemset mining, (2) Sequential pattern mining, (3) 
Structured pattern mining. Figure 1 shows various association 
rule mining algorithms with sub branches developed since the 
first introduction of ARM algorithms.  

3.1. Frequent Itemset Mining 

Today, frequent itemset mining is one of the most 
important tools employed on transactional database and has an 
important role in many data mining tasks to discover patterns 
such as classifiers, correlations, clusters, association rules, 
sequences. It aims to optimize the process of finding patterns in 
a dataset. 

A frequent itemset is a pattern that is observed more 
frequently than a certain threshold, minimum support, in the 
database. Some strategies used to generate frequent itemsets 
are:  
 Reduce the number of candidates (M) by using pruning 

techniques to decrease M.  
 Decrease the number of transactions (N) with using Direct 

Hashing and Pruning (DHP) and vertical-based mining 
algorithms. 

 Decrease the number of comparisons (NM) with using 
efficient data structures for storing transactions or 
candidates. 

Possible applications of algorithms based on frequent item sets 
approach are: 
 Develop arrangement of products on a catalog’s pages,in 

shelves, 
 Product bundling, support cross-selling applications, 
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Along with the rapid increase inlog-data, there was a need 
for handling this type of data. Shao et al. suggested 3D-
Apriori algorithm. 3D-Apriori algorithm has main features as 
attribute data discretion and spatial predicate extraction for 
generation of association rules. 3D-Apriori interprets the 
logging data and enhances efficiency of association rules 
behind the logging data transformation [16]. 

Sharmaand Sufyan developed a probabilistic analysis of 
Apriori algorithm to discover association rules and frequent 
itemsets in a transactional database. It contains a single 
database scan and limit unsuccessful candidate sets. The 
concept of recursive medians is used in the algorithm as an 
Inverted V-Median Search Tree (IVMST). The recursive 
medians compute the dispersion of each itemsets in the 
transaction list and the maximum number of common 
transactions for any two itemsets. Using the above mentioned 
procedures, they presented a time efficient algorithm to 
discover frequent itemsets [17]. 

Wang et al. improved the efficiency of data mining in large 
transaction database by applying Fast-Apriori algorithm. 
According to the authors, data mining engine could be derived 
using an integration of various mining algorithms, cluster 
analysis, regression analysis, classification and other 
techniques. An engine, obtains queries from users, search the 
memory to show suitable results to the user. They applied a 
fast approach into existing Apriori algorithm for getting quick 
responses. This fast algorithm has better performance than 
Apriori algorithm [18]. 

Zeng et al. concentrated on time and space complexity of 
Apriori algorithm and optimize the complexities. The Hash 
Mapping Table (HMT) and Hash Tree methodologies were 
used to optimize time and space complexity. HMT and Hash 
Tree store transactions and can locate the itemsets easily 
[19].The authors claim that data collection and evaluation 
processes are comparatively faster than traditional Apriori 
algorithm.  

Xiaohui proposed a new kind of ARM algorithm and 
presented an improved Apriori algorithm. The improved 
algorithm can decrease the input-output operation of mining 
process and reduce times of database searching, saving storage 
space required during application of the algorithm [20]. This 
method is more efficient than the traditional algorithms in 
mining association rule. 

Enhanced scaling Apriori was suggested by Prakash and 
Parvathi in 2010. This method is an improved Apriori 
algorithm to limit the number of candidate sets while 
generating association rules and overall execution time [21]. 

In 2008,Kamrulet al. presented a novel algorithm, named 
as Reverse Apriori Frequent Pattern Mining. This algorithm 
works efficiently and produces large frequent itemsets and 
reduces the number of items until it takes the largest frequent 
itemsets [22]. 

Direct Hashing and Pruning (DHP) Algorithm 

DHP algorithm was proposed by Park et al. in 
1995todecrease the number of candidates in the early passes 
and the size of database. DHP employs a hashing technique 
aiming to restrict the number of candidate itemsets, efficiently 
generate large itemsets and reduce the transaction database 
size [23]. 

Another hash-based approach for mining frequent itemsets 
was developed by Wang and Chen in 2009. The information 
of all itemsets is fitted into a structure by using fixed hash-
based technique. This method summarizes the data 
information by using a hash table for predicting the number of 
the non-frequent itemsets and speeds up the process [24]. 

Partitioning Algorithm 

Partitioning algorithm was proposed by Savasere et al. 
which is based on idea of partitioning of database in n parts to 
find the frequent elements so that memory problems for large 
databases can be solved since database is divided into several 
parts [25]. 

This algorithm decreases database scan to generate 
frequent itemsets but time for computing the frequency of 
candidate generated in each partitions increases. On the other 
hand, it reduces the I/O overhead and CPU overhead for most 
cases significantly.  

Dynamic Itemset Counting Algorithm (DIC) 

DIC algorithm is designed by Brinet al. for database 
partitions into intervals of a fixed size to reduce the number of 
transitions through the database. 

This algorithm aims to find large itemsets which uses 
fewer passes over the data than traditional algorithms. Also, 
DIC algorithm presents a new method of generating 
implication rules. These rules are standardized based on both 
the antecedent and the consequent [26]. 

Sampling Algorithm 

Sampling algorithm was presented by Toivonen in 1996. 
In this algorithm, a sample of itemsets R is taken from the 
database instead of whole database D. 

This algorithm reduces the database activity for finding 
association rules as it requires only a subsample of the 
database scanned [27].This algorithm is suitable for any kind 
of databases, although it sometimes cannot give accurate 
results. 

Continuous Association Rule Mining Algorithm(CARMA) 

CARMA was proposed in 1999 by Hidber to compute 
large itemsets online. This algorithm uses novel method to 
limit the interval size to 1.The user can change some design 
parameters, such as minimum confidence, minimum support 
and the parameters during the first scan of the transaction 
sequence [28]. CARMA outperforms Apriori and DIC on low 
support thresholds. 

Split and Merge Algorithm (SAM) 

SAM algorithm was introduced by Borgelt et al.in 2009. It 
finds frequent item sets with a split and merge technique 
where the data is represented as an array of transactions. The 
traversal order for the prefix tree and the horizontal 
representation form of the transaction database can be 
combined. In each step, two subproblems formed with a split 
step and a merge step in two conditional databases [29]. 
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PRICES Algorithm 

This algorithm was created by Wang and Tjortjisin 2004 
which firstly recognizes all large itemsets and creates 
association rules. It reduces large itemset generation time by 
scanning database and logical operations [30]. It is an efficient 
method and, in some cases, ten times as fast as Apriori 
algorithm. 

3.1.2.Algorithms Based On Vertical Layout Database 

In vertical layout data set, each column corresponds to an 
item, followed by a TID list, which is the list of rows that the 
item appears. An example of vertical layout database set is 
given in Table 6 [10]. 

TABLE 6: EXAMPLE OF VERTICAL LAYOUT DATABASE 

ITEM TID_List 
I1 T1, T4, T5 
I2 T3,T5 
I3 T1, T2, T4 
I4 T3, T4, T5 
I5 T1, T2, T3 

Equivalence CLASS Transformation Algorithm (ECLAT) 

ECLAT algorithm was created by Zaki in 2000 for 
discovering frequent itemsets from a transaction database. It 
uses vertical layout. 

Each item utilizes intersection based method to calculate 
the support. Support of an itemset can be calculated by 
intersecting of any two subsets. Confidence is not calculated 
in this algorithm [31]. The algorithm finds the elements using 
depth first search and scans the database only once. 

3.1.3. Algorithms for Mining from Projected Layout Based 
Database 

This kind of database uses divide and conquer strategy to 
mine the useful knowledge. It counts the support more 
efficiently than based on Apriori algorithms. The projected 
layout consists of record id separated by column. Tree 
Projection algorithms may work based on two kinds of 
ordering: breadth-first and depth-first [32]. 

FP_Growth Algorithm 

FP-growth method has been devised for mining of the 
complete set of frequent itemsets without candidate generation 
by Han et al. in 2000. 

FP-growth method is an efficient tool to mine long and 
short frequent patterns [33].We may state several benefits over 
the other methods:  
 Creating a highly compact FP-tree which is smaller than 

the original database,  
 Implementing a pattern growth method to avoid costly 

candidate generation, 
 Saving the costly database scans in the subsequent mining 

processes, 
 And working in a divide-and-conquer way and decreasing 

the size of the subsequent conditional pattern bases and 
conditional FP-trees. 

Many alternatives and extensions were implemented to the 
FP-Growth approach: Depth-first frequent itemset generating 
algorithm[35], H-Mine algorithm[34]; exploring top-down and 
bottom-up traversal of such trees in pattern-growth mining; 
and prefix-tree-structure for efficient pattern growth mining. 

H_Mine Algorithm 

H-Mine was developed by Pei et al. in 2007 which was 
created using in-memory pointers. H-mine uses an H-struct 
new data structure for mining[34].In large databases, it firstly 
makes a partitioning of the database and mines the partitions 
in main memory using H-struct. It benefits of this data 
structure and dynamically adjusts links in the mining process 
and runs very quickly in memory-based settings. H-mine has 
demonstrated a good performance for various kinds of data. 
However, its execution time is larger than other algorithms 
because of the partitioning process [34]. 

3.2. Sequential Pattern Mining 

Sequential pattern mining discovers frequent subsequences 
as patterns in a sequence database. Ordered elements or events 
are found in a sequence database. For example: <a(bc)dc> is a 
subsequence of <a(abc)(ac)d(cf)> Table 8 shows a sequence 
database. 

TABLE 8: A SEQUENCE DATABASE 

SID Sequence 

10 <a(abc)(ac)d(cf)> 

20 <(ad)c(bc)(ae)> 

30 <(ef)(ab)(df)cb> 

40 <eg(af)cbc> 

 
There are several applications of sequential pattern mining: 

 Customer shopping sequences: A customer can make 
several next purchases, e.g., buying a PC and some 
Software and Antivirus tools, followed by buying a 
memory card, and finally buying a printer and some office 
papers. 

 Medical treatments, natural disasters. 
  Science and engineering processes. 
 Telephone calling patterns, Weblog click streams. 
 DNA sequences and gene structures. 

Sequential pattern mining can be classified into two major 
groups: (1)Apriori-based Approaches, and (2) Pattern-Growth-
based Approaches.  

3.2.1.Apriori Based Approaches(The candidate generation-
and-test approach) 

The candidate generation-and-test approach is an extension 
of the Apriori-based frequent pattern mining algorithm to 
sequential pattern analysis [40]. 
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 TABLE 7: FREQUENT ITEMSET MINING 

Horizontal Layout Based 
Study Authors / Year Method Advantages 

Fast Algorithms for 
Mining Association Rules 
[11]. 

Agrawal, Ramakrishnan, 
1994 

Combining the best features of 
Apriori and AprioriTid, 
AprioriHybrid algorithm. 

AprioriHybrid performs better than Apriori in almost 
all cases. 

An Effective Hash based 
Algorithm for Mining 
Association Rules [23]. 

Park et al., 1995 
DHP algorithm (Direct Hashing 
and Pruning)  

Restricts the number of candidate itemsets and reduce 
the transaction database size 

An Efficient Algorithm for 
Mining Association Rules 
In Large Databases [25]. 

Savasere et. al., 1995 Partitioning algorithm 
This algorithm decreases database scan to generate 
frequent itemsets Reduces the I/O overhead and CPU  
 

Dynamic Itemset Counting 
and Implication Rules For 
Market Basket Data [26]. 

Brin et al., 1997 
DIC(Dynamic itemset counting) 
algorithm  

Decreases the number of transitions through the 
database and use fewer candidate itemsets than 
approaches based on sampling. 

Sampling Large Databases 
for Association Rules [27]. 

Toivonen. 1996. Sampling Algorithm 
Reduces the database activity for finding association 
rules, less scan or time. 
 

Online Association Rule 
Mining [28]. 

Hidber, 1999 
CARMA(Continuous Association 
Rule Mining 
Algorithm)algorithm  

Out-performs Apriori and DIC on low support 
thresholds. 
Use memory more efficiently  

SAM: A Split And Merge 
Algorithm For Fuzzy 
Frequent [29]. 

Borgelt and Wang, 2009 
 

SAM( Split and Merge 
Algorithm) 

This algorithm can beimplementedon external storage 
or relational databases easily 

PRICES: An Efficient 
Algorithm For Mining 
Association Rules [30]. 

Wang and 
Tjortjis, 2004 

PRICES Algorithm 
Reduces large itemset generation time. It is ten times 
as quick as Apriori in some cases 

Vertical Layout Based 

Study Authors / Year Method Advantages 

Scalable Algorithms For 
Association Mining [31]. 

Zaki, 2000 

Six new algorithms combining 
these features 
(ECLAT (Equivalence CLAss 
Transformation), 
MaxEclat, Clique, MaxClique, 
TopDown, and AprClique) 

MinimizesI/O costs by making 
only a small number of database scans, 
decreases computation costs  

Projected Layout Based 

Mining Frequent Patterns 
Without Candidate 
Generation [33]. 

Han et al.,2000 
FP-growth method 
 

Saves the costly database scans in the subsequent 
mining processes and decreases the size of the 
subsequent conditional pattern bases and conditional 
FP-trees. 

HMine: Fast And Space 
Preserving Frequent 
Pattern Mining In Large 
Databases [34]. 

Pei et al., 2007 
H-Mine algorithm 
 

H-mine has an great performance for different kinds 
of data and a polynomial space complexity. 
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Two main methods have been developed based on this 
idea: (1) GSP, a horizontal format-based sequential pattern 
mining method, (2) and SPADE, a vertical format-based 
method. 

Generalized Sequential Patterns Algorithm (GSP) 

GSP is a horizontal data format based sequential pattern 
mining algorithm proposed by Srikant and Agrawalin 1996. It 
contains time constraints, a sliding time window, and user-
defined taxonomies. In this algorithm, it uses the downward-
closure property of sequential patterns and adopts a multiple 
pass, candidate generate-and-test approach [38]. 

TABLE 9: SEQUENTIAL PATTERN MINING 

Sequential Pattern Discovery Using Equivalent Classes) Algorithm 
(SPADE) 

SPADE algorithm is an Apriori-Based Vertical Data 
Format algorithm represented by Zaki (2001).The algorithm 
decomposes the original problem into smaller sub-problems 
which can be easily solved in main memory using efficient 
lattice search techniques and simple join operations [39].  

3.2.2. Pattern-Growth-based Approaches 

These approaches provide efficient mining of sequential 
patterns in large sequence databases without candidate 
generation. Two main Pattern-Growth algorithms are 
Frequent pattern-projected Sequential Pattern Mining 
(FREESPAN) [40]and Prefix-projected Sequential Patterns 

Mining (PrefixSpan) [41].Table 9 shows Sequential Pattern 
Mining algorithms. 

FREESPANAlgorithm 

FREESPAN algorithm is proposed by Han et al. in 2000 
for the purpose of reducing efforts of candidate subsequence 
generation. This algorithm uses frequent items to recursively 
project sequence databases into a set of smaller projected 
databases. This work showed that FREESPAN mines the 
complete set of patterns and runs more efficiently and faster 
than Apriori-based GSP algorithm [40]. 

PrefixSpan Algorithm 

This is a pattern-growth approach to sequential pattern 
mining, which was developed by Pei et al. in 2001 [41]. 
Again, PrefixSpan works in a divide-and-conquer way. This 
algorithm projects recursively a sequence database into a set 
of smaller projected databases and reduces the number of 
projected databases using a pseudo projection technique [41]. 

GSP, SPADE, and PrefixSpan have been compared by 
Han et al. in 2004. PrefixSpanhas better performance than 
GSP, FREESPAN, and SPADE and consumes smaller 
memory space than GSP and SPADE. 

3.3. Structured Pattern Mining 

Complicated scientific and commercial applications need 
to resolve more complicated patterns than frequent itemsets 
and sequential patterns. For example sophisticated patterns 
consist of trees, lattices, and graphs. Graphs play a major role 
in modeling sophisticated structures .They are used in various 
applications such as, chemical informatics, text retrieval, 
video indexing, bioinformatics, web analysis, and computer 
vision. Frequent substructures can be discovered in a 
collection of graphs. Washio and Motoda in 2003 provided a 
survey on graph-based data mining [42]. Several methods 
have been developed for mining interesting subgraph patterns 
from graph datasets such as mathematical graph theory based 
approaches like FSG and GSPAN, greedy search based 
approaches like SUBDUE, inductive logic programming 
(ILP) based approaches like WARMR etc. A short summary 
of these algorithms are shown in Table 10. 

SUBDUE Algorithm 

SUBDUE algorithm is a graph-based relational learning 
system which is developed by Holder et al. in 1994 improved 
over the years [43]. 

SUBDUE produces a smaller number of substructures in 
graph datasets by finding subgraphs and can efficiently 
discover best compressing frequent patterns. This algorithm 
is very efficient for finding recurring subgraphs in a single 
large graph [44]. 

Frequent SubGraph Discovery Algorithm (FSG)  

FSG, algorithm is proposed by Karypis and Kuramochi in 
2004 for finding frequently occurring subgraphs in large 
graph datasets. This algorithm can be used to discover 

Apriori Based 
Study Authors / 

Year 
Method Advantages 

Mining Sequential 
Patterns: 
Generalizations 
And Performance 
Improvements 
[38]. 

Srikant, 
Agrawal,19
96 

Generalized 
Sequential 
Patterns 
(GSP) 

GSP is much faster 
than the Apriori All 
algorithm. It 
guarantees finding 
all rules that 
have a user-
specified minimum 
support. 

SPADE: An 
Efficient 
Algorithm For 
Mining Frequent 
Sequences [39]. 

Zaki, 2001 SPADE 
algorithm 

SPADE outperforms 
the best previous 
algorithm. 
Problems can be 
solved in main 
memory easily and 
efficiently. 
. 

Pattern-Growth-based 
FREESPAN: 
Frequent Pattern-
projected 
Sequential Pattern 
Mining [40]. 

Han,2000 FREESPA
N 
(Frequent 
pattern-
projected 
Sequential 
Pattern 
Mining) 
 

FREESPAN mines 
the complete set of 
patterns and runs 
more efficiently and 
faster than Apriori-
based GSP 
algorithm. 

Mining Sequential 
Patterns By 
Pattern-growth: 
The PrefixSpan 
Approach [41]. 

Pei et 
al.,2004 

PrefixSpan 
algorithm 
 

PrefixSpan has 
better performance 
than the apriori 
based algorithm 
GSP, FREESPAN, 
and SPADE. 
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recurrent patterns in spatial, scientific and relational datasets. 
This work showed that FSG is efficient for finding all 
frequently occurring subgraphs in datasets that contain over 
200,000 graph transactions and scales [45]. 

Graph‐based Substructure pattern mining Algorithm (GSPAN) 

GSPAN algorithm discovers frequent substructures 
without candidate generation. This algorithm can be used for 
mining all kinds of frequent substructures including 
sequences, trees, and lattices. GSPAN algorithm mines 
frequent subgraphs more efficiently than others [46]. Also, it 
outperforms FSG algorithm in mining larger frequent 
subgraphs in a bigger graph set with lower minimum 
supports. 

Inductive Logic Programming Algorithm (WARMR)  

WARMR, a powerful Inductive Logic Programming 
(ILP) Algorithm, was presented by King et al. in 
2001.WARMR is the first ILP data mining algorithm to be 
used to chemoinformatic data. WARMR extends Apriori to 
discover frequent queries in data by using rules to generate 
the candidates from frequent queries and mines Association 
Rules in Multiple Relations (ARMR's) [47].WARMR has a 
strong advantage over previous algorithms for discovery of 
frequent patterns. 

TABLE 10: STRUCTURED PATTERN MINING 
Structured Pattern Mining 

Study Authors / 
Year 

Method Advantages 

 Substructure 
discovery in the 
SUBDUE 
system [43]. 

Holder et 
al., 1994 

SUBDUE 
algorithm. 
 
 

It is very efficient 
for finding 
recurring 
subgraphs in a 
single large graph. 

An Efficient 
Algorithm for 
Discovering 
Frequent 
Subgraphs [45]. 

Karypis 
and 
Kuramochi, 
2004 

FSG 
(Frequent 
SubGraph 
discovery) 
Algorithm: 
 

It is efficient for 
finding all 
frequently 
occurring 
subgraphs in 
datasets 
containing over 
200,000 graph 
transactions and 
scales. 

Graph-Based 
Substructure 
Pattern Mining 
[46]. 

Yan and 
Han,2002 

GSPAN 
Algorithm 
 

It mines frequent 
subgraps more 
efficiently with 
lower minimum 
supports. 

WARMR: A 
Data Mining 
Tool For 
Chemical Data 
[47]. 

King et al, 
2001 

WARMR 
(Inductive 
Logic 
Programmi
ng) 
Algorithm. 
 

It has a strong 
advantage over 
previous 
algorithms for 
discovery of 
frequent patterns. 

 

4. RESULTS AND CONLUSION 

Since the substantial advancements in computer era, 
mining of big data to gain useful knowledge has been a hot 
topic studied from several aspects. One of the important 
fields of research is ARM which aims to uncover the subtle 

relations between the entries of huge bulk data so that some 
meaningful rules of associations can be generated. The 
obtained association rules can be exploited to identify which 
instances correlate in certain dimensions. ARM techniques 
have been used in many different areas ranging from retail 
industry to healthcare and diagnosis of illnesses.  

In this work, a comprehensive literature review on the 
existing algorithms of ARM is conducted with a special focus 
on the performance and application areas of the algorithms. 

Many algorithms have been proposed to discover 
association rules since the beginning of research in this area. 
The developed algorithms are, in general, classified into three 
main classes: (1) based on frequent itemsets, (2) based on 
sequential pattern, and (3) based on structures pattern.  

This classification mainly groups the algorithms based on 
the given structure of the dataset. Thus, the structure of the 
dataset subject to ARM study essentially determines the 
algorithm to be employed. Within each of these three classes, 
each algorithm provides superiority in certain aspects in 
comparison with each other. The above discussed algorithms 
were developed to improve the accuracy and decrease the 
complexity, and execution time. However, they do not always 
succeed to optimize all these objectives simultaneously.  
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